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Abstract: The existence of mitochondria in eukaryotic host cells as a remnant of former microbial
organisms has been widely accepted, as has their fundamental role in several diseases and physiolog-
ical aging. In recent years, it has become clear that the health, aging, and life span of multicellular
hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal
system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it
is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the
light of rising knowledge on the gut–brain axis, such crosstalk might severely affect brain homeostasis
in aging, as neuronal tissue has a high energy demand and low tolerance for according functional
decline. In this review, we summarize what is known about the impact of both mitochondria and
the microbiome on the host’s aging process and what is known about the aging of both entities.
For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their
aging and similar observations have been made for mitochondria. Finally, we present pathways by
which mitochondria are affected by microbiota and give information about therapeutic anti-aging
approaches that are based on current knowledge.
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1. Introduction
1.1. Common Evolutionary History of Mitochondria and Bacteria

Mitochondria are organelles with their own genome that arose from a proteobacteria
living within single-celled archaea more than a billion years ago. The step of endosymbiosis
offered tremendous opportunities for energy production and metabolism and allowed the
evolution of fungi, plants, and animals.

Mitochondria share many similarities with prokaryotic cells, such as a double mem-
brane, the ability to produce ATP through the generation of a proton gradient generated
across the inner mitochondrial membrane, and the fact that they have their own genome
and bacterial-type ribosomes. The mitochondrial DNA (mtDNA) found in mammals en-
codes 37 genes comprising 2 ribosomal, 22 transfer RNA, and 13 mRNA encoding for
subunits of the mitochondrial respiratory chain [1,2]. The biggest part of the mitochondrial
proteome, approximately 1500 proteins, are encoded by the nuclear genome necessary for
oxidative phosphorylation, other metabolic pathways, and transcription and translation in
mitochondria. Therefore, a coordinated crosstalk between the nucleus and mitochondria
is essential to adapt mitochondrial function to the current energy need of cells [3]. Mito-
chondria consist of four sub-compartments. The outer mitochondrial membrane (OMM)
is permeable to small molecules (<5 kDa). The intermembrane space (IMS) sequesters
numerous proteins acting as damage-associated molecular patterns, such as cytochrome c,
apoptosis-inducing factor (AIF), and several pro-caspases. Thirdly, the inner mitochondrial
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membrane (IMM) contains the different complexes of the respiratory electron transport
chain (ETC, complexes I–IV) as well as the Fo-F1 ATP synthase (complex V). The ETC is
responsible for the mitochondrial membrane potential (MMP). The IMM is rather imper-
meable due to cardiolipin, a phospholipid found exclusively in the inner mitochondrial
and bacterial plasma membrane. It contains less fluid, requiring an orchestrated import
mechanism for proteins that are encoded in the nucleus. The surface of this membrane
forms cristae to increase the efficacy of the ETC and the ability to produce adenosine
triphosphate (ATP) in the matrix. The matrix contains multiple copies of mtDNA orga-
nized into nucleoids as well as the machinery that is necessary to transcribe and translate
mtDNA-encoded genes. Reducing agents (NADH and FADH2) are also generated in the
matrix by the tricarboxylic acid (TCA) cycle and fatty acid ß-oxidation (FAO) [4].

Even if mitochondria still resemble in some parts their bacterial ancestor, the organelle
also acquired new characteristics, such as a dynamic morphology of the mitochondrial
network, which affects both mitochondrial activity and function. Mitochondria are very
dynamic organelles moving along the cytoskeleton through cells to spots where energy is
needed [5]. Furthermore, mitochondrial morphology is also permanently shaped by its
surroundings, shifting from rounded/fragmented mitochondria into an interconnected and
elongated tubular network. Mitochondrial function is maintained by a constant balance
between mitochondrial fission and fusion [4,6–11]. Mitochondrial fusion is required to
ensure mtDNA integrity. Depolarized and fragmented mitochondria are degraded by
mitophagy, a specific form of autophagy. In healthy organisms, these two processes are
balanced. Despite these adaptations as intracellular organelles, it is tempting to speculate on
remnants of behavior of mitochondria derived from their evolutionary origin: can it be, that
they still react to metabolites of the microbiota in a specific way, and does this contribute
to physiology or vulnerability (as in aging) of the host? Competition and symbiosis can
be considered when thinking of bacterial commensals, for example. Moreover, reactions
to viruses similar to bacterial infection by bacteriophages is to be assumed. Interestingly,
while eukaryotic viruses were found to be highly abundant in infancy, they decreased
afterwards and remained constantly low for the rest of the life. Bacteriophages, on the
contrary, decreased between adulthood and the elderly stage, with Siphoviridae matching
best the overall trend [12].

1.2. Mitochondria in the Aging Organism

Mitochondria are semi-autonomous organelles acting as metabolic hubs in our cells.
Mitochondria provide the majority of ATP via oxidative phosphorylation at the ETC.
However, mitochondria are not only involved in energy metabolism; they also contribute
to Ca2+ homeostasis, protein synthesis, metabolite synthesis, and programmed cell death
via opening of the mitochondrial transition pore (mPTP), for example. Several recent
reviews give an excellent overview regarding the role of mitochondria in aging, reflecting
on every aspect mentioned above in detail [13–19]. Here, we briefly introduce the most
important mitochondrial contributions to the aging process, which are also affected by
bacterial metabolites or viral components.

During the aging process, mitochondrial function, especially mitochondrial membrane
potential (MMP) and respiratory capacity per mitochondrion, decline [20–22]. This is often
accompanied by increased production of reactive oxygen species (ROS) [23]. ROS are
by-products of oxidative phosphorylation and are important signaling molecules. Mito-
chondrial dysfunction and reduced antioxidant detoxification result in oxidative stress,
lipid oxidation, and mtDNA damage [24,25]. These observed changes in mitochondrial
function and increased ROS production resulted in the free radical theory of aging [26].
However, recent findings suggest that balanced mitochondrial activity is essential for
healthy aging. Recently, reduction in mitochondrial respiration and function was discussed
as a protective mechanism leading to increases in lifespan. Several publications demon-
strated that a mild reduction in MMP might result in the oxidized state of the ETC, leading
to decreased ROS [27]. However, this mild depolarization was lost in different tissues of ag-
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ing mice such as heart, muscle, and brain [17]. Therefore, constant loss of MMP as observed
in the aging process might reflect reduced ETC capacity, reflected in the loss of activity and
stability of ETC complexes during aging [23,28]. This decline is specific for different tissues
with reduced complex III and IV activity in the heart muscle and diminished complex I and
III function in brain, liver, and skeletal muscle, as well as parts of our immune system such
as CD4+ T-helper cells [17,29,30]. Analysis of mitochondrial function in the skeletal muscle
of older subjects revealed a drop in ATP levels [31,32] of approximately 50% compared to
younger controls, which might also be the cause for sarcopenia typically associated with
aging.

One reason for deficits in the mitochondrial respiratory chain is an altered mitochon-
drial stress response in aging and longevity. Since the mitochondrial proteome is encoded
in both the nuclear and mitochondrial genome, mitochondrial protein homeostasis is cen-
tral to mitochondrial function. Mild and time-restricted mitochondrial stress, such as
disruption of most of the electron transport chain, results in the activation of the mitochon-
drial unfolded protein response (termed the mito-hormetic effect), which extends the life
span in C. elegans, yeast, flies, and mice (for review please see [25]). In contrast, chronic
OXPHOS dysfunction is often detrimental. Mitochondrial defects in mouse models result
in a reduced lifespan, and human diseases associated with OXPHOS defects are typified by
protracted defects [20,22,23,33].

Mitochondrial biogenesis is the process by which cells increase their individual mi-
tochondrial mass in order to increase their energy production. Mitochondrial mass is
also regulated by mitochondria-specific autophagy and maintenance of mitochondrial
dynamics. Evidence of an age-related decrease in mitochondrial biogenesis has previ-
ously been reported, but the precise reason for this decrease remains elusive [34–36]. The
PPARγ coactivator 1 (PGC-1) family, comprising of PGC-1α, PGC-1β, and PGC1-related
coactivators, are main regulators of mitochondrial biogenesis. One important downstream
target of PGC-1α are transcription factors such as TFAM (also involved in the regulation
of mitochondrial biogenesis) or PPARγ [37,38]. Recent data indicate that impairments in
mitochondrial biogenesis during aging may, at least in part, be a result of the age-related
increase in mtDNA deletion, leading to a decreased ability to replicate mtDNA and to
generate new mitochondria. Another factor discussed is mtDNA mutation [39–43]. It
is well established that mitochondrial mutations increase during aging in both animal
models and humans. These mutations differ in frequency between tissues and even within
tissues in different cell types. The role of mtDNA mutations during the aging process is
highly discussed because mtDNA exists in hundreds to thousands of copies in cells. It
is generally accepted that the mutational load must exceed 60% of all mitochondria to
lead to a phenotype [44]. Reduction in total mtDNA might be involved in mitochondrial
dysfunction during aging [42].

Mitochondrial fission and fusion both contribute to dilution and segregation of dam-
aged organelles, including mtDNA mutations, ensuring cellular homeostasis as well as
survival after stress. Cellular and organismal health relies on a tight balance between
mitochondrial fission and fusion processes [11]. A disruption in this balance is linked
to aging, originally observed in lower organisms such as fungi or worms [20]. In mice,
an impairment of both mitochondrial fission and fusion was observed during the aging
process. In aged mice, reduced protein expression of the mitochondrial fission factor DRP1
seems to be a critical factor to reduce mitochondrial fission [45]. Again, the balance between
fission and fusion seems to be the key to healthy aging because both knockdown and
overexpression of DRP-1 results in muscle atrophy in 18-month-old mice [10]. In C. elegans,
increased mitochondrial fusion is essential for longevity in the diverse longevity pathways,
as inhibiting mitochondrial fusion reduces their lifespans to wild-type levels [46,47]. How-
ever, increased mitochondrial fusion is not a major driver of longevity but rather is essential
to allow the survival of older animals beyond their normal lifespan in diverse longevity
pathways [46].
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When mitochondrial fission and fusion and other mitochondrial stress response path-
ways exceed their capacity to restore and repair mitochondrial function, mitophagy takes
place [48–50]. This is the only mechanism which degrades mitochondria in total, thereby
avoiding cellular damage and apoptosis. Mitophagy in higher eukaryotes operates in
different tissues and cell types via a ubiquitin-dependent mechanism by the PINK-Parkin
axis or a ubiquitin-independent mechanism via autophagy receptors such as BNIP3, NIX,
and FUNDC1. Both pathways result in the engulfment of mitochondria in the autophago-
some. Mitophagy reduction is observed in several tissues in mice. In a transgenic mouse
model visualizing mitophagy with fluorescence-tagged mt-Keima, a reduction of 70% was
discovered in the hippocampus of aged (21-month-old) mice compared to young (3-month-
old) mice [51]. Furthermore, mitophagy is strongly impaired in the aging mouse heart,
contributing to OXPHOS dysfunction and heart failure [52–54].

Aging alters cytosolic calcium handling [21,55] which may predispose mitochondria
to calcium overload. This phenomenon is closely connected to the opening of the mPTP
and initiation of apoptosis (for a comprehensive review please see [13]). The sensitivity
of the mPTP to calcium is strongly enhanced by oxidative stress, reduced mitochondrial
respiration culminating in ATP decline, and mitochondrial membrane depolarization. The
regulation of mPTP opening is affected during aging as demonstrated in mitochondria
isolated from different tissues such as brain, liver, or lymphocytes [56].

Pathological or accelerated aging in pre-frail and frail persons without other comor-
bidities is associated with so called “inflammaging”, characterized by higher circulating
levels of inflammatory mediators such as CRP, IL-6, and fibrinogen [57–60]. One important
finding is that the basal production of IL-6 in T-lymphocytes is higher; however, evoked
responses to a cytokine challenge are reduced. This phenomenon is probably caused by a
chronic activation of the JAK/STAT signaling pathway. A subset of elderly humans with
higher rates of essential hypertension, arterial stiffness, and increased overall mortality is
characterized by elevated IL-1ß levels and activation of the NLRP3 inflammasome [61].
Recent findings suggest that the chronic activation of NLRP3 inflammasome has deleteri-
ous effects which might be addressable by IL-1ß antibody caakinumab [62]. The immune
system and mitochondria are connected via the release of mtDNA [58]. mtDNA acts as
a damage-associated molecular pattern, activating NLRP3 inflammasome and driving
caspase-1 activation and processing of pro-IL-1ß and pro-IL-18 [61,63]. NLRP3 is also
regulated by mitochondrial ROS and the inner membrane lipid cardiolipin, a relic of the
cell membrane of prokaryotic cells that gave rise to mitochondria [64].

1.3. Microbiota and Aging of the Host

The human gut-resident microbiota is composed of bacteria, archaea, protista, fungi,
viruses, and phages [65]. Its composition is clearly affected by several diseases or nutri-
tional and lifestyle conditions of the human host (e.g., increased Ruminococcus gnavus in
irritable bowel syndrome, [66]). However, definition of the healthy human intestinal micro-
biome still is questionable [67]. This makes it rather difficult to evaluate which changes
observed in aging, a naturally occurring phenomenon that involves highly variable func-
tional decline [34,36,68], are deleterious and which are second to disabilities such as chronic
inflammation or loss of barrier integrity. A meta-analysis including >2500 metagenomic
datasets derived from individuals aged 20 to 89 years could segregate groups of bacterial
taxa that were altered with disease per se and such that were altered especially in the
elderly with disease [34]. Moreover, some bacterial metabolic pathways were found to
correlate with frailty and not only with chronological age, such as choline consumption
and trimethylamine production, which can be conducted by C. clostridioforme, for example.
Thus, “usual suspects”, as they were designated in a recent review [69], might exist that
foster unhealthy or healthy aging. Reduction in Roseburia and Faecalibacterium seems com-
mon in aging, while the increase in certain taxa seems to tip the scales: while Akkermansia
and Odoribacter are mainly found associated with healthy aging conditions, R. gnavus
or the genus Enterobacteriaceae have been associated with unhealthy aging (reviewed
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in [69]). For the effect of the host’s age on the gut fungal community, the mycobiome
reports are scarce. In a study on Sardinians, the observed fungal communities could not
be separated by age of the host [70]. Additionally, putative gut commensal fungal species
with pathobiont potential were not found to differ between aged and young SPF mice [71].
Additionally, reports on archaea are not abundant: for example, an increase in the general
amount was observed in centenarians in comparison to elderly and young subjects but did
not reach statistical significance [72]. For protista, data are also limited. However, recently
a correlation between Blastocystis, a single-cell eukaryotic microorganism frequently found
that is capable of asymptomatic long-term host colonization, and cognitive performance
in humans, was described [73]. Prevalence in a non-clinical population cohort was 30%,
and interestingly, the age of subjects was associated with Blastocystis subtype carrier sta-
tus which then influenced the bacterial community within the gut [74]. A meta-analysis
considering 2697 metagenomes from 32 studies revealed a highly personalized virome
and demonstrated that data also are severely dependent on the methodology used in the
respective studies [12]. Nevertheless, the analysis concluded that a significant decrease
in the richness of the virome occurs between adults and the elderly in healthy, western
cohorts. This finding could be confirmed in a Chinese cohort. More recently, it was shown
that richness of the gut virome increases again in centenarians compared to young but
also aged (<60 years) adults when investigating samples from 195 Japanese and Sardinian
individuals [75]. Namely, viruses associated with Clostridia were affected and higher lytic
activity was found. Together with the microbial population, the centenarian virome seemed
to support hydrogen sulfate output, which might also affect mucosal integrity, resistance to
pathogens, and mitochondrial function [76]. Other reports draw an inconclusive picture
on specific viral groups in the elderly: Alharshawi and colleagues [77] recently showed an
increase in dUTPase antibodies, indicative of the Herpes virus, in plasma (comparing a
group aged approximately 47 years and a group aged on average 66 years), while another
report determined no correlation between age and RNA abundance in the Epstein–Barr
virus (EBV, belonging to the Herpes virus family) with age [78].

To sum this up, the bacterial origin of mitochondria is widely accepted and both
microbiota and mitochondria seem to be driving forces of healthy and diseased aging of
their host. This poses the question of whether they comprise two independent factors or if
there is—maybe due to their evolutionary entanglement—the possibility of a bacterial or
microbial influence on the host mitochondria alongside aging. In the following chapters,
we determine whether common processes of aging occur in bacteria and mitochondria,
which pathways are known for microbiota effects on mitochondria, and attempt to deduce
therapeutic options that may be used (via these interactions) to ameliorate deterioration by
aging.

2. Aging of Bacteria and Mitochondria

Bacteria were previously assumed to be immortal, escaping senescence via the consec-
utive formation of two viable and identical daughter cells with each division. However,
in the last two decades the perspective has changed: several observations were made that
indicate non-symmetrical divisions and with this, bacterial aging. Asymmetry was not
only found in structural means, as with Caulobacter crescentus [79], but also in functional
divergence of resulting cells. E. coli divides morphologically symmetrical; however, proper-
ties of the two cells derived from division are distinct and they can be distinguished as a
“new pole” and an “old pole” cell (Figure 1). Stewart et al. demonstrated decreased growth
rate and offspring production as well as increased incidence of death in the “old pole” cell,
designating it as the parent cell that gave rise to juvenile offspring [80].
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Figure 1. Aging in multi-cellular organisms and bacterial cells. Left: using germline cells, multi-
cellular organisms such as mice allow their offspring to start with a non-exhausted cell pool while
the parental animals accumulate dysfunctional cells with age, leading to diseased states, frailty, and
finally death. Right: in bacterial cell division, morphological and functional asymmetry occurs. The
schematic diagram of C. crescentus shows that during its life cycle, it gives rise to two morphologically
different daughter cells: the stalked cell remains attached to the substrate, while the swarmer cell is
motile due to its flagellum. E. coli and many other bacteria seemingly divide symmetrically. However,
probabilities of the two cells rising from division, designated young and old pole cells, are divergent
(image created by BioRender).

Similar to eukaryotic cells, stress seems to play a pivotal role in senescent bacteria.
For example, the RpoS (RNA polymerase stress-response sigma factor) pathway, a general
stress pathway, was found to correlate with the rate of aging in bacteria. Aged colonies
even accumulate RpoS mutants that can evade the stationary phase and utilize acetate
to continue growth [81], which makes it a sort of longevity factor in bacteria (reviewed
in [82]). Contradictory findings regarding bacterial senescence have even been traced on
the apparent stress factors (discussed in [83]).

The nine hallmarks of aging identified by Lopez-Otin in 2013 contain genomic insta-
bility, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication [84]. These hallmarks have become a reference point for aging
research in metazoans. For bacteria, unicellular organisms harboring circular DNA, at least
stem cell exhaustion and telomeric shortening can be excluded. Intercellular communica-
tion can also be doubted as an important point in bacterial aging due to the unicellular
occurrence. Nevertheless, bacteria can form biofilms bearing advantages for the commu-
nity and rely on such communication. Biofilms present as very complex formations and
reactions based on nutritional restriction cannot be excluded, which hampers analyzing
aging-dependent changes in intercellular communication. Moreover, many investigations
on aging in bacteria have been conducted in microfluidic devices, not allowing for com-
munication between cells. Therefore, knowledge is rather limited in this regard (see [83]).
Genomic instability as a contributor to aging could also not be demonstrated in bacteria
without doubt (see Table 1). Probably, bacteria evolved too-efficient repair systems to
counteract genomic instability including photoreactivation to reverse UV-induced damage
or DNA alkylation, base excision repair and nucleotide excision repair, homologous recom-
bination, non-homologous end joining, and single-strand annealing (reviewed in [85]).

For loss of proteostasis, on the contrary, examples in bacteria can be identified. Data
on loss of proteostasis and aggregation of proteins seem more robust than those for other
hallmarks of aging, but it has to be considered that bacterial inclusion bodies can also
increase stress-resistance against external encounters [86]. An analogy can be drawn here
regarding the aggregation of amyloid plaques in humans: approximately 40% in those
aged 80 to 89 years were amyloid positive without having cognitive decline in a large
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population-based study [87]. Thus, increased protein aggregation can potentially be seen
as an interim coping strategy with misbalanced production or degradation of unwanted
proteinaceous products. Unfortunately, in humans the amyloid protein aggregation was
correlated with increased incidence of developing mild cognitive impairment or even
disease in the following years.

Table 1. Evidence for aging hallmarks in bacteria.

Hallmark Investigation
Tools Organism Observation Ref

Genomic
instability

fYFP-labeled
MutL mismatch
repair proteins

E. coli Replication errors occur at a
constant rate across ages. [88]

Growth arrest,
DNA repair

mutants
E. coli

Oxidative damage to DNA
does not limit survival

during stasis.
[89]

Loss of
Proteostasis

Coomassie
Blue-stained

PAA gels
E. coli

Aggregates accumulate
concomitantly with cell

death.
Dead cells contain increased

amounts of aggregates.
Aggregation occurs before

cell death.

[90]

Fluorescently
tagged

chaperone
(IbpA)

E. coli Aggregates migrate to the
“old pole” cell. [91–93]

Fluorescently
tagged

chaperone
(IbpA)

E. coli
Ejection of minicells with

aggregates promotes stress
resistancy of cells.

[94]

Growth arrest E. coli Accelerated protein
oxidation [89]

Epigenetic modifications in bacteria consist of N6-methyl-adenine, C5-methyl-cytosine,
or N4-methyl-cytosine, and the phosphorothioation of the DNA backbone might addition-
ally lead to epigenetic marks (reviewed in [95]). Reports on aging and epigenetic regulation
in bacteria are scarce. For B. subtilis, aging could be demonstrated; however, it did not
correlate with sporulation, an epigenetic-regulated feature of these bacteria [96]. Further
evidence for epigenetic modulation with bacterial aging is, to our knowledge, still lack-
ing. Similarly, aging-dependent deterioration in nutrition sensing has not been described
even if various sensor systems have been identified in bacteria (e.g., [97]). Interestingly,
slowing down the growth rate of E. coli through the carbon source or via a carbon-limited
chemostat reduced death rates during starvation afterwards [98]. This somehow resembles
longevity-eliciting effects of caloric restriction in humans or animal models (for a recent
review see [99]). We were not able to identify a publication reporting on the co-aging of
the host and senescence of its commensal bacteria. It seems plausible that bacterial cells
of lowered functionality might be expelled from the gut, for example. However, proteins
involved in acetate conversion and utilization were upregulated during bacterial aging, and
acetate can promote the persistence of mutated colonies that are capable of circumventing
the stationary phase [100]. This was also observed for exogenous-administered acetate
(not produced by the mutant strains themselves); thus, an altered microbiome might also
prevent senescence of bacterial organisms by maintaining a comparably high acetate level.

Investigation of mitochondrial ultrastructure by electron microscopy unraveled two
subpopulations of mitochondria gained from mitochondrial fission: those with a nor-
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mal ultrastructure and mitochondria with a swollen morphology, indicating signs of
damage [101–103]. Moreover, differences in transmembrane potential and opacity of mi-
tochondrial content were observed as well as paracrystalline inclusion bodies formed of
mitochondrial creatine kinase upon creatinine deficiency [104,105]. Interestingly, these
subpopulations must not be equally distributed in the host cell. Under asymmetric di-
vision of stem-like cells from the human mammary gland, the “old” mitochondria are
distributed unevenly across daughter cell populations [106], and this seemed mandatory
for stemness. However, aging of mitochondria cannot be seen as clear as for bacteria, or
even for eukaryotic cells, due to their specific biology: mitochondria not only undergo
fission, but they also fuse, and this continuous and fast exchange of organelle content (“kiss
and run”) can lead to preservation of a coherent population ([107], reviewed in [6]). A
comparably low proportion of mitochondrial proteins (13 out of >1000) is encoded by the
mitochondrion itself. Thus, the aging process of the host cell might easily override the aging
of the organelle. Transient failures that might be seen as aging phenomena can, for example,
be compensated by the unfolded protein response of the mitochondria (UPRmt). This
process, however, depends on recognition of the damaged organelle by the host cell and on
communication with the nucleus. This then downregulates protein import, for example,
and with this, restores proteostasis of the organelle (reviewed in [108]). Another example is
provided by the recently reported finding that TMBIM5 regulates dynamic reshaping of
the mitochondrial proteome, guaranteeing proteostasis due to bioenergetic demands [109].
Potentially, the mere number of mitochondria per cell (ranging from ~80 to ~2000 in somatic
cells, reviewed in [110]) and their potential to share and dilute defective components does
not allow investigation into the aging of single organelles, and the mitochondria might
better be seen as part of a multi-cellular organism despite their origin from unicellularity.

While cell fusion of eukaryotic cells occurs in the context of recombination or tissue
repair regularly, it is restricted in regard to bacterial cells due to their cell wall. Neverthe-
less, they can shed the cell wall transiently due to environmental stress [111]. Prolonged
exposure to the stressor leads to so-called L-forms. Fusion seems to benefit from membrane
fluidity and interestingly, rigidity of membranes in L-forms increased with aging of the cul-
ture [112]. Thus, facilitated fusion in the mostly secure and homeostatic environment of the
host cell might be an adaptation to circumvent aging processes by mitochondria. In highly
differentiated host cells, fusion might be hampered by the expanded cytoarchitecture as it
relies on motility of the organelles. Here, nanotunnels that have been found in mitochon-
dria and bacteria might offer a way to maintain intercellular/interorganelle communication
through the exchange of small molecules (review on mitochondrial nanotunnels: [113]).
Whether this form of communication is affected by aging of either mitochondria or bacteria
has, to the best of our knowledge, not yet been determined. An investigation on human
skeletal muscle, however, related increased nanotunnels to mitochondrial stress and de-
scribed a significant increase in patients with mtDNA-based diseases in comparison to
healthy controls [114]. This might hint at the role of nanotunnels in the aging process.

3. Viral Impact on Mitochondria

The gut microbiome contains a high density of organisms. While numbers might
be difficult to compare, some organisms seem to have low abundance (0.1–0.8% of DNA
content, reviewed in [65]) while bacteria dominate, making up approximately 93% of the
DNA content. Viral DNA contributes 6% to the community. Organization and balance of
the microbial community enforces communication. Specific ecological niches exist, built by
the several longitudinal but also cross-sectional gradients within the gut (nutrients, oxygen,
pH; [115]) that might allow specialists to occupy it without too much rivalry. However,
when pathogens try to enter the already-studded space, several scenarios of viral/bacteria
crosstalk can be considered. Firstly, co-infections have been observed where at least one
of the organisms seem to profit from the precedence of another. One example is the
infection by transmissible gastroenteritis virus (TGEV) that was shown to promote motility,
invasiveness, and adhesion properties of Enterococcus faecalis and enterotoxigenic E. coli
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K88 (review on bacterial and viral intestinal co-infection; [116]). Secondly, competition for
ecological niches can be considered. In 1965, the antibacterial activities of several viruses,
such as Herpes simplex, were demonstrated [117]. Bacteria can themselves stabilize the
virion, but they can also prevent viral infection as in the case of rotavirus infection of
mice and segmented filamentous bacteria (interactions summarized in [118]. Here, the
resource of the host cell is valuable, and it is good that hostile communication is deployed.
This can be carried to extremes when bacteriophages come into play. A direct invasion of
the bacterium is the goal and aggressive strategies are used. A phage–bacterial ratio of
∼1:1 has been suggested for the human gut, thus their impact on controlling and shaping
the bacterial community should not be underestimated [65]. In sum, a wide spectrum
of communication between viruses and bacteria has been established during evolution
and leads to the assumption that remnants of these interactions might also be found in a
mitochondria–virus interplay. Indeed, screening of the literature identified several viruses
that interfere with mitochondrial function or other properties (see Table 2 and Figure 2).
Some of the observed effects might rely on indirect effects elicited by influences of the
host cell, such as in the case of the HIV-1 viral protein R (Vpr) that severely interferes
with the axonal transport of mitochondria by modulating the host cell’s cytoskeleton [119].
Similarly, Hepatitis C virus (HCV) infection led to a mitochondrial localization of the
host catalytic part of telomerase within the tumorous and peri-tumorous tissue of human
patients (TERT, [120]), where it has no canonical function. The effect of this unusual
localization has not been analyzed yet. However, there are also many cases in which
the viral compounds directly localize within mitochondria and affect their function, and
mitochondrial targets have been identified. For example, the nonstructured protein Orf9b
from SARS-CoV binds to Tom70 [121]. This protein is one of the major import receptors in
the translocase of the outer mitochondrial membrane. Co-immunoprecipitation indicated
a direct interaction of Orf9b and Tom70, while other Tom complex members or other
viral proteins failed. The Cryo-EM structure of the Tom70-ORF9b complex revealed that
ORF9b binds to the Tom70 substrate binding pocket and with this might hamper the
import of selective substrates such as PTEN induced kinase1 (PINK1) [122]. Regarding the
localization of Tom70 in the outer mitochondrial membrane, it still must be accounted to
the “host-side”. However, interaction of viral proteins with the mitochondrially encoded
4L subunit of NADH dehydrogenase or the TIM (translocase of the inner membrane)
complex have also been described or at least have been predicted [121,123]. This opens
up the possibility that here, old hostile or coexistence strategies between viruses and
bacteria/mitochondria are the basis of these observations.

Table 2. Viral components affecting mitochondrial function.

Virus Viral Component Mitochondrial
Component Observation/Theoretical Impact Ref.

Herpes virus Whole virus mtDNA
Virus infection induces mtDNA

stress (increase in larger nucleoids,
decrease in total nucleoid number).

[124]

SARS-CoV

5′/3′ untranslated regions
contain putative

mitochondrial residency
sites

Localization in host mitochondria. [125]

Viral nonstructured
protein Orf9b Tom70 Localization in host mitochondria. [121]

Nsp5 (C145A) tRNA methyltransferase 1
(TRMT1)

Enzyme for dimethylation of
guanosine (m2,2G) on
mitochondrial tRNAs.

[121]
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Table 2. Cont.

Virus Viral Component Mitochondrial
Component Observation/Theoretical Impact Ref.

ORF9b Localization in host mitochondria. [126]

ORF8a
Localization in host mitochondria,

increases in mitochondrial
transmembrane potential.

[127]

Nonstructural protein 2
(Nsp2)

Prohibitin 1 (PHB1) and
PHB2

(also other potential host
interaction partners

identified for Nsp1 and 2)

Mitochondrial biogenesis. [128]

ORF3a
Mitochondrial

ubiquitin-specific
peptidase 30 (USP30)

[129]

Nsp10 NADH 4L subunit and
cytochrome oxidase II

NADH cytochrome activity
altered, inner mitochondrial

membrane depolarized.
[123]

Global analysis of
SARS-CoV-2

host-interacting proteins:
26 of the 29 SARS-CoV-2

proteins)
Nsp4, Nsp8, Orf9c,

structural protein M

332 high-confidence
SARS-CoV-2-human

protein–protein
interactions; with

mitochondrial relevance:
Tim complex,

mitochondrial ribosome,
electron transport

Mitochondrial function. [121]

HIV-1 Tat (transactivator of
transcription protein) ? Hyperpolarization of

mitochondria in cortical neurons. [130]

HIV-1 viral protein R
(Vpr)

? (probably microtubule
structure of the host cell)

Disturbed axonal transport.
Reduced peroxisome
proliferator-activated

receptor-gamma coactivator 1
alpha (PGC-1α) expression via

increase in the methylation of the
PGC-1α promoter.

[119]

Tat and
negative-regulating factor

(Nef)
?

Increased ROS production and
mitochondrial mass

destabilization of the
mitochondrial membrane

potential.

[131]

Tat Mitochondrial KATP
channels discussed Mitochondrial hyperpolarization. [130]

Infection ?
Increased mitochondrial ROS

levels.
Decreased ATP-linked respiration.

[132]

HIV gp120 and Tat

Inhibition of mitophagic flux.
Increased mitochondrial

fragmentation.
Increased sequestosome 1
translocation to damaged

mitochondria.

[133,134]

Enterovirus 71 (EV71) Infection ?

Decrease in mitochondrial
electrochemical potential. ∆Ψ(m)
increase in oligomycin-insensitive

oxygen consumption.
Induced ROS production.

[135]

Borna disease virus (BDV) Accessory protein X ? Colocalizes with mitochondria. [136]

Hepatitis C virus (HCV) D2 domain of NS5A
(NS5A-D2)

(might be due to
glucokinase activation of

the host cell)

Reduced spare respiration
capacity. [137]

Infection ? TERT localization in mitochondria. [120]

?: targeted mitochondrial component unknown.
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Figure 2. Affected mitochondrial pathways. Viral (A) as well as bacterial (B) commensals or
pathogens can have an influence on a variety of molecular pathways that are important for main-
tenance and function of the host’s mitochondria. The impact of the microbiota might be directly or
via the host’s own transcriptional/translational machinery, such as for PGC-1α (with subsequent
activation of NRF1 and TFAM) or PPARγ (orchestrating lipid metabolism, e.g., β-oxidation) (the
image was created by using BioRender). Drp1: dynamin-related protein 1; Fis1: mitochondrial fission
protein 1; HDAC: histone deacetylas; Mff: mitochondrial fission factor; Mfn1/2: mitofusin 1/2; mPTP:
mitochondrial permeability transit pore; NRF1: nuclear respiratory factor 1; Opa1: optic atrophy-1;
TFAM: mitochondrial transcription factor A.
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4. Eukaryotic Microbial Organisms with Mitochondrial Effectors

Alongside viruses and prokaryotic organisms, anaerobic/microaerophilic eukaryotes
(protista and fungi) can be found in the intestinal system and are sometimes of high clinical
relevance, such as Entamoeba histolytica or Giardia intestinalis. Under the oxygen-restricted
conditions provided by the gut lumen, it seems implausible to maintain organelles with
the main function of deriving energy from oxidative phopshorylation. However, the
mitochondria of such organisms have been subjected to extensive reductionary processes
and are termed mitochondrion-related organelles (MROs, reviewed in [138]). Entamoeba,
MROs, for example, even lack the characteristic cristae. Depending on the ability to build
ATP and on the substrates used as electron acceptors, they have been classified as aerobic
mitochondria, anaerobic mitochondria, H2-producing mitochondria, hydrogenosomes, or
mitosomes (classes 1–5, [139]). Nevertheless, these organisms share at least rudimentary
pathways with the host cells via the ancestral characteristics of the mitochondria. This
might limit their ability to interfere with the host’s mitochondria in a non-beneficial way.
We were only able to identify two reports on Trypanosoma cruzi infection and its impact
on the host’s cardiac mitochondria [30,140]. Carbonylation of subunits of mitochondrial
respiratory complexes were observed in infected murine hearts as well as increased release
of mitochondrial free radicals. Interestingly, mitochondrial morphology of some fungi
seems to affect virulence in the case of pathological species such as Cryptococcus deuterogattii
where a more tubular mitochondrial shape was correlated with an enhanced intracellular
parasitism rate (reviewed in [141]).

5. Bacterial Compounds Affecting Mitochondria

One way for bacteria to communicate with host mitochondria is through bacterial
metabolites [142–145]. Resistant starch is a type of feedstock which cannot be degraded by
our enzymes. Other sources are cellulose, pectins, and oligosaccharides or amino acids such
as valine, leucine, or isoleucine. Important fractions which are metabolized by microbiota
in our gut are short chain fatty acids (SCFA) which contain up to seven carbon atoms, a
straight-branched chain, and include formate, acetate, propionate, butyrate, isobutyrate,
valerate, isovalerate, 2-methylbutuyrate, hexanoate, and heptanoate [145–147]. Fermenta-
tion of pectins and xylans lead to acetate, while starch is metabolized into butyrate [148].
SCFAs modulate oxidative status in the colon as well as mucosal inflammation, transepithe-
lial fluid transport, and reinforce the epithelial defense barrier [149]. Importantly, the effects
of SCFAs are not limited to the colon, but they may also affect mitochondrial function in
the liver, the brown adipocytes, and skeletal muscles via G-Protein coupled receptors or
FFA receptors [149–152]. The most abundant SCFAs are acetate, butyrate, and propionate,
which are normally found in concentrations up to 150 mM in a ratio of 3:1.1 [153].

Acetate is produced by a wide range of Gram-negative microbes such as Bacteroides,
Bififobacterium, Clostridium, or Ruminococcus species [148]. Acetate is converted to
Acetyl-CoA by directly entering the TCA cycle (for a summary of mitochondrial pathways
affected by viral and bacterial compounds see Figure 2). From all SCFAs, acetate reaches
the highest concentration in the peripheral blood, contributing to energy production in
the muscles, heart, and adipose tissue [146]. In the liver, acetate is used to produce energy,
cholesterol, long-chain fatty-acids, glutamine, and glutamate [153,154].

Mainly Gram-positive anaerobic bacteria, such as Faecalibacterium or Eubacterium and
Roseburia species from Clostridial clusters of Firmicutes, generate butyrate [146,147,155,156].
Despite being less abundant, butyrate is the main energy source for intestinal epithelial cells via
feeding into mitochondrial respiration via the TCA cycle. In addition, it also interacts with G-
Protein-coupled receptors GPR41, GPR43, and GPR109a, as well as with histone deacetylases
(HDACs) [146,151]. Targets modulate a variety of intracellular signaling pathways and
responses explaining the pleiotropic anti-inflammatory effects of butyrate. The inhibition of
HDACs by butyrate also stimulates mitochondrial biogenesis and thereby energy expenditure.
In addition, butyrate promotes physiological hypoxia in colonocytes by stabilizing the hypoxia-
inducible factor (HIF) [157,158]. HDACs and HIF both serve as barrier-protective genes and
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influence mucosal homeostasis. Butyrate reduces gut mucosal inflammation by increasing
the production of anti-inflammatory cytokines such as transforming growth factor β (TGF-ß),
IL-10 secretion from T-cells, and IL-18 secretion in the intestinal epithelium [159]. In addition,
butyrate inhibits the production of pro-inflammatory signaling molecules such as the nuclear
factor kappa B (NF-KB) [160].

Both metabolites prevent the down-regulation of mitochondrial fusion factors and
up-regulation of fission factors in pancreatic beta cells after treatment with the apopto-
sis inducer and metabolic stressor streptozotocin at rather high concentrations. Acetate
showed more efficiency in enhancing metabolism and inhibiting ROS, while butyrate had
less effect but was stronger in inhibiting the SCFA receptor GPR41 and NO generation [149].
Another protective mechanism in colonoctyes, discussed for both metabolites, is the ac-
tivation of AMP-activated protein kinase (AMPK). AMPK is an essential energy sensor
for mitochondrial oxidative phosphorylation and regulates gene expression resulting in
reduced lipogenesis and an increase in the AMP:ATP ratio [161–163].

Propionate is also produced by Gram-negative phyla Bacteroidetes and Actinobacteria
in the intestinal tract and is considered to promote mitochondrial activity and metabolic
reprogramming [147,164].

Branched SCFAs, such as isobutyrate, 2-methylbutyrate, and isovalerate, are produced
during the breakdown of proteins under a decreased fiber supply [146]. They elevate
acylcarnitine levels, indicating an aberrant fatty acid oxidation, and promote mitochondrial
biogenesis by activating PGC1α and its downstream target PPARγ [165,166].

Alongside SCFA, bacteria produce secondary bile acids [164,167]. Anaerobic bacteria,
e.g., Eubacterium, Clostridium, and Bacteroides, degrade 5–10% of primary bile acids into
secondary bile acids. They engage with the nuclear receptor, the transcriptional regulator
farnesoid X receptor (FXR), and the GPCR TGR5 [168], and activate downstream targets
such as PPARγ or other transcriptional regulators such as the epigenetic regulator SIRT1 or
the hormone fasting-induced adipose factor FIAF. They thereby modulate carbohydrate
(SIRT1, FIAF) and lipid metabolism, increasing fatty acid oxidation and oxidative phospho-
rylation. They also directly modulate mitochondrial function and biogenesis. Deoxycholic
acid impairs membrane fluidity and is discussed to alter mitochondrial membrane com-
position [169]. Hydrophobic secondary bile acids induce apoptosis via formation of the
mitochondrial transition pore (mPTP) [170].

Mitochondria also metabolize proteins and amino acids. Here, two amino acids are
of special interest: the non-essential amino acid cysteine and the essential amino acid
tryptophan. Microbiota, e.g., Escherichia coli, are able to produce tryptophan which then can
be made available to the host [171]. Tryptophan is the precursor to the neurotransmitter
serotonin and plays a role in synthesizing the cofactors for redox reactions nicotinamide
adenine dinucleotide (NAD) and NAD phosphate (NADP), both fuels for the electron
transport chain of mitochondria. Other bacteria, e.g., Streptomyces antibioticus, Cynaidium
caldarium, Karlingia rosea, and Xanthomonas pruni, use tryptophan to produce quinolinic acid,
which is a neuroactive metabolite of the kynurenine pathway. Cysteine is a component
of the antioxidant glutathione detoxifying mitochondrial ROS, and is metabolized into
H2S by intestinal cells and microbiota such as D. desulfuricans, Desulfobacter, Desulfob-
ulbus, and Desulfotomaculum [172]. H2S shows bell-shaped effects on cellular functions
in lower concentrations supporting cellular bioenergetics, whereas higher concentrations
block cellular respiration [146,173]. In low concentrations, H2S primes the mucosal barrier
functions and protective immunity. H2S stimulates mitochondrial bioenergetics by feeding
into the mitochondrial electron transfer chain and mediating persulfidation of ATPase and
glycolytic enzymes. In contrast, excessive H2S production by Fusobacterium is associated
with intestinal inflammation. It induces DNA-damage in epithelial cells, inhibits SCFA
metabolism, and compromises the mucus barrier by inducing breaks and permitting expo-
sure of luminal contents to the underlying tissues. Another gas produced by mitochondria
is NO. NO interacts at physiological levels with the reduced heme center of the cytochrome
c oxidase, thus competing with oxygen binding or at the oxidized copper center by nitrite.
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In higher concentrations above 1 µM, NO, as well as peroxynitrite, inhibit mitochondrial
function unselectively but irreversibly due to modification of proteins. However, NO also
stimulates mitochondrial biogenesis via the PGC-1α pathway.

Another important bacterial component affecting mitochondria are lipopolysaccha-
rides (LPS), a major component of the Gram-negative bacterial outer membrane [174]. LPS
binds to toll-like receptors (TLR), mainly TLR4, which activate NF-KB and upregulate
inflammatory chemokines and cytokines [175,176]. LPS injections into animals resulted in
reduced complex I, II, and IV activity and mitochondrial uncoupling [177].

Trimethylamine-N-oxide (TMAO) is produced through meta-organismal steps from
precursors such as betaine and its metabolites γ-butyrobetaine and choline, which are
converted to trimethylamine (TMA) by the gut microbiota belonging to Firmicutes and
Proteobacteria phyla in the intestine. TMA is absorbed through the intestinal wall and
transported to the liver and oxidized into TMAO. TMAO increases the expression of
pro-inflammatory IL-6 gene and chemokine ligands such as TNFα [178].

During the aging process the profile of microbiota in the gut changes, as already
pointed out in chapter 1.3, and the composition of metabolites is altered [67,69,179]. The
metabolites butyrate and acetate are associated with younger age groups and healthy aging
groups. Metabolites such as TMA, LPS, or deoxycholic acid are produced by unhealthy
aging-associated pathobionts.

Most interactions between microbiota, such as bacteria, their metabolites, and the
host body, occur where these microbial organisms are highly concentrated, e.g., the gas-
trointestinal tract. However, several bacterial metabolites, e.g., SCFAs, are discussed to
not only act on the gut as the place of origin but also on the brain. In addition, bacteria
also synthesize hormones, including glucagon-like peptides and neurotransmitters, such
as GABA, serotonin, dopamine, or acetylcholine, which shape the function of the enteric
nervous system and might also communicate via the vagus nerve with our brain. Several
recent reviews give an excellent overview on the gut–brain axis and how this axis is altered
in aging and neurodegenerative disease [180–185].

6. Deducing Therapeutic Interventions from Current Knowledge

To shift the microbiome which drives unhealthy aging to a microbiome which pro-
motes healthy aging, several strategies, such as prebiotics, synbiotics, postbiotics, health-
linked dietary regimes, and exercise, are discussed [69,186–188]. Prebiotics include nutri-
tional supplements increasing beneficial microorganisms such as freeze-dried blueberry
powder which consists of high levels of polyphenols. Consumption of blueberries or blue-
berry powder for six weeks increased butyrate-producing microbiota in aged women such
as Faecalibacterium and Coprococcus as well as Butyricimonas and Barnesiella [189–193].
This microbiota shift was accompanied by an increase in antioxidant activity in baseline and
placebo controls. Synbiotics are single or many beneficial microorganisms administered in
combination with prebiotics. Postbiotics are deliberately inactivated microbial cells, cell
components, or microbiota-derived metabolites. The aim of interventions with prebiotics
and postbiotics is to increase beneficial taxa, such as Lactobacilli and Bifidobacteria, in
addition to butyrate-producing bacteria and Akkermansia [69]. These taxa promote insulin
sensitivity, maintain intestinal barrier activity, and cross-feed the butyrate producers with
acetate. For example, administration of live or pasteurized Akkermansia muciniphila for
three months in humans reduced body weight, insulin resistance, and cardiometabolic
risk factors [194–196]. In addition, pathobionts such as Desulfovibrio, Streptococcus, and
Enterococcus must be reduced to promote healthy aging.

Another and probably more effective concept to shift the microbiome toward healthy
aging is whole-diet intervention [69]. One recent study focusing on this concept is the
Mediterranean diet (MedDiet) intervention, increasing the intake of vegetables, fruits,
legumes, fish, olive oil, and nuts and reducing the intake of red meat, dairy products,
and saturated fats [197,198]. The effects of the MedDiet on the prevention of diseases
such as cancer, cardiovascular diseases, or Alzheimer’s disease have been known for
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decades. However, until now, no data were available on how the MedDiet alters the
microbiome. The study by a European consortium, NU-Age MedDiet, shows in 323 older
intervention participants compared to 289 age matched controls that butyrate producers,
e.g., Faecalibacterium prausnitzii or Roseburia hominis, were increased and pathobionts, such
as Clostridium ramosum, were decreased. The pathobionts were also linked to greater
genomic coding capacity for the production of harmful metabolites such as deoxycholic
acid.

Exercise to promote healthy aging is a hot topic and affects mitochondrial function
by improving mitochondrial biogenesis and balancing mitochondrial fission, fusion, and
mitophagy [176–178]. Furthermore, moderate exercise alters microbiota composition and
increases Akkermansia muciniphila as well as Lactobacilli and Bifidobacteria, promoting
epithelial barrier integrity and producing SCFAs. Aerobic exercise increases SCFAs and
thereby alters luminal pH in the colon by decreasing primary bile acids to secondary bile
acids such as deoxycholic acid. A summary of the above-reported influence of microorgan-
isms is given in Figure 3.
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Anti-viral drugs might exert another therapeutic pathway. Interferon administration in
HC patients, for instance, lowered the frequency of mtDNA mutations in hepatocytes [199].
Direct eradication of HCV in a study including peripheral monocytic blood cells from
133 patients with a mean age of 66 revealed a restoration of mitochondrial function [200].
Maximal and reserve respiratory capacity increased as well as mtDNA integrity. To as-
sess the risk of interferon treatment in the geriatric population, a population with high
HC infection rates, a retrospective study was conducted including approximately 500 pa-
tients [199]. It revealed good therapeutic outcomes as well as similar survival rates and side
effects when comparing early and late elderly individuals. Thus, targeting Herpes viruses
seemingly presents a therapeutic option to target mitochondrial dysfunction in aging. An
example where this seems unfeasible with the currently used drugs is antiretroviral therapy
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(ART) or highly active ART in HIV therapy. The antiviral thymidine analogues themselves
lead to mitochondrial dysfunction and oxidative stress [200]. These nucleoside analogues
might even be incorporated into mtDNA, leading to mutations or termination of mtDNA
synthesis in combination with deregulation of DNA repair mechanisms, as reported in T
cells, for example [200]. Very recently, activation of endogenous retroviruses in aged mice
and primates, but also in human tissue and serum, was assessed and was suggested as a
biomarker for aging [100]. Suppression of these viruses revealed anti-senescent effects.

Another, more fundamental option of interfering with the whole-gut microbiota is
provided by the overwriting of the original community by installing an administered
microbiota presenting better health conditions—or, in the case of aging, younger age. This
fecal material transfer (FMT) is well established and is demonstrated to be highly efficient,
for example, in the case of Clostridium difficile infections [201]. However, regarding aging,
only pre-clinical data exist. For instance, it could be demonstrated that transfer of an aged
wild-type microbiota into 5xFAD Alzheimer model mice aggravated certain aspects of
pathology [201]. Moreover, transfer of an aged microbiota into wild-type mice resulted
in altered expression of proteins related to synaptic plasticity or neurotransmission in the
hippocampus and an aging-like phenotype of microglia within the hippocampus [202].
Efficacy of FMT as a therapeutic option for ameliorating age-dependent decline was also
conducted in mice with transfer of young animal-derived material in aged individuals: the
myeloid skew that is characteristic of aging could be mitigated and the hematopoietic stem
cells could be rejuvenated [199]. In another study, restoration of A. muciniphila abundance
(and with this, metabolite acetic acid) via fecal material from young mice displayed hepato-
protective effects and improved the antioxidative capacity, for example [199]. However,
while these studies are promising, unfortunately, a detailed analysis of mitochondrial
properties was not undertaken.

7. Conclusions

Aging is a phenomenon that seemingly affects all organisms—even microbial, single-
celled ones. Thus, that organelles derived within evolution from these microbes are also
subjected to the process is highly plausible. Nevertheless, in addition to sharing hallmarks
of aging, due to their ancestral characteristics, mitochondria are also targets for microbes
that might have shared an ecological niche with them in earlier times. For viruses and
bacteria, direct interference or effects of metabolites in a more indirect manner can be iden-
tified that support or harm mitochondrial function. Knowledge on such interferences by
protista, fungi, and archaea as part of the human microbiota is rather restricted and needs
further investigation. These microbial–mitochondrial interactions can modify the aging
process of the host where sustained energy provision might be needed to counterbalance
decline of structures and functional complexes. This might be of special relevance for
neuronal cells, as their long axons and high demands of energy do not allow even a subtle
decline in energy support without leading to deterioration of function and development
of neurodegeneration. Extended knowledge on the respective pathways by which our di-
verse commensals drive mitochondrial properties might finally provide future therapeutic
approaches in fostering healthy aging by maintaining energy support.
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