
High-performance processing of Next-Generation
Sequencing data on CUDA-enabled GPUs

Dissertation
for the attainment of the degree

“Doctor of Natural Sciences”
at the Department of Physics, Mathematics, and Computer Science

of Johannes Gutenberg University
in Mainz

Felix Kallenborn

born in Bad Kreuznach, Germany.
Mainz, January 28, 2024

1. Reviewer Prof. Dr. Bertil Schmidt

2. Reviewer Prof. Dr. Andreas Hildebrandt

Date of oral examination 24.01.24

Abstract

With the technological advances in the field of genomics and sequencing, the pro-
cessing of vast amounts of generated data becomes more and more challenging.
Nowadays, software for processing large-scale datasets of sequencing reads may
take hours to days to complete, even on high-end workstations. This explains the
need for new approaches to achieve faster, high-performance applications. In con-
trast to traditional CPU-based software, algorithms utilizing the massively-parallel
many-core architecture and fast memory of GPUs are potentially able to deliver the
desired performance in many fields.

In this thesis, we introduce two novel GPU-accelerated applications, CARE and
CAREx, for common steps in sequence processing pipelines, error correction and
read extension of Next Generation Sequencing (NGS) Illumina data, to improve
the results of down-stream data analysis. To the best of our knowledge, CARE and
CAREx are the first modern GPU-accelerated solutions for the respective problems.
A key component of our algorithm is the identification of similar DNA sequences
within a dataset. For this purpose, we developed a minhashing-based index data
structure for large-scale read datasets. In conjunction with our fast bit-parallel
shifted hamming distance computations, this allows for the efficient identification of
similar reads. The resulting set of similar sequences is subsequently arranged into a
gap-free multiple-sequence alignment to solve the problem at hand.

Sequencing machines introduce both systematic errors and random errors. CARE,
Context-Aware Read Error corrector, accurately removes errors introduced by NGS
sequencing machines during the initial sequencing of a biological sample. With the
help of a pre-trained Random Forest, CARE generates two orders-of-magnitude fewer
false positives than its competitors. At the same time, it shows similar numbers of
true positives.

Read extension describes the process of elongating DNA sequences. The presence
of longer sequences improves the resolution of more, larger structures within a
genome. CAREx, Context-Aware Read Extender, produces longer sequences, so
called pseudo-long reads, by connecting the two reads of read pairs which were
sequenced in close proximity. Evaluation shows that CAREx produces significantly
more highly accurate pseudo-long reads than the state-of-the-art.

iii

With algorithms tailored towards high-performance GPU computations, both CARE
and CAREx run significantly faster than the CPU-based competitors, while, at the
same time, produce more accurate results. The processing of a large Human dataset
with 30x coverage with CARE requires less than 30 minutes using a single A100 GPU.
This time can be further reduced down to 10 minutes on multi-GPU systems. In
contrast, CPU-based tools like Musket or BFC take 3 hours and 1.5 hours, respectively.
Read extension of a Human dataset with CAREx takes 3.3 hours to complete on a
single GPU, whereas Konnector2 requires over a day to complete.

This shows that large-scale sequence processing can greatly benefit from the usage of
GPUs, and that multiple-sequence alignment-based algorithms should be considered
despite their increased complexity because they provide great accuracy. While our
general building blocks have been tailored towards our needs for error correction and
read extension, they could also prove useful in other GPU-accelerated applications
that process sequence data.

iv

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Thesis structure . 3

1.3. Publications . 3

2. Background 5
2.1. Bioinformatics . 5

2.2. Sequence similarity and sequence alignment 7

2.2.1. Hamming Distance . 7

2.2.2. Pair-wise sequence alignment 7

2.2.3. Multiple-sequence alignment 10

2.3. GPU computing . 11

3. Related Work 17

I. Sequencing read error correction 21

4. CARE: Context-Aware Read Error correction 23
4.1. Publications . 24

4.2. Related Work . 25

4.2.1. K-mer-based methods . 25

4.2.2. MSA-based methods . 26

4.3. Algorithm . 26

4.3.1. Construction phase . 27

4.3.2. Correction phase . 27

4.3.3. Output phase . 34

4.4. Implementation . 34

4.4.1. Data structures . 34

4.4.2. CPU version . 38

4.4.3. Single-GPU version . 39

4.4.4. Batched minhasher queries 40

4.4.5. Bit-parallel hamming distance 42

4.4.6. MSA construction . 43

vii

4.4.7. Random Forest . 44

4.4.8. Multi-GPU version . 46

5. Evaluation of CARE 49
5.1. Datasets . 50

5.2. Training of Random Forests . 51

5.3. Variation of program settings . 52

5.4. Evaluation on simulated HiSeq datasets 55

5.5. Evaluation on simulated MiSeq datasets 57

5.6. Evaluation on real-world datasets . 58

5.6.1. K-mer evaluation . 58

5.6.2. De-novo assembly evaluation 59

6. Performance of CARE 61
6.1. Construction phase . 62

6.2. Correction phase . 63

6.3. Merge phase . 65

6.3.1. Overall performance . 66

6.4. Performance with random forests . 67

6.5. Read placement . 68

6.6. Performance comparison to other tools 72

6.7. Multi-GPU Performance . 73

6.7.1. Dataset R2 . 74

6.7.2. Dataset A4 . 78

6.8. Proof-of-concept: Sequence parsing on the GPU 81

7. Conclusion 85

II. Read extension 87

8. CAREx: Context-aware read extension 89
8.1. Related Work . 90

8.2. Algorithm . 90

8.2.1. Construction phase . 91

8.2.2. Extension phase . 92

8.3. Implementation . 96

9. Evaluation of CAREx 99
9.1. Datasets . 100

9.2. Program options . 101

viii

9.3. Evaluation on simulated datasets . 101
9.4. Evaluation on real-world datasets . 105

9.4.1. Edit statistics . 106
9.4.2. De-novo assembly . 107

9.5. Impact of sequencing errors . 109
9.6. Performance . 110

10.CAREx Conclusion 113

III. Conclusion 115

11.Future work 117

12.Conclusion 119

Bibliography 121

List of Figures 129

List of Tables 133

A. Appendix 135
A.1. CARE: Results for simulated data . 135
A.2. CARE: K-mer evaluation results for real-world data 137
A.3. CARE: Assembly results for real-world data 139

ix

Introduction 1
1.1 Motivation

Bioinformatics is an important research topic with impact to our daily life as it is
found, amongst others, in drug design, personalized medical treatment, vaccine
development, and genome studies. At the start of this millennium, the publication
of the first fully assembled human genome with over 3 billion base pairs has been a
scientific milestone and has provided invaluable insights, for example the layout of
chromosomes, the size of coding region, and the number of genes [@31, 1, 11].

Many applications such as genome assemblers operate on DNA snippets which are
also called reads. These reads are produced by sequencing machines. Whereas in
2001 the sequencing of a human genome cost an astonishingly $100, 000, 000 as
shown in Figure 1.1, technological advances in the field, next generation sequencing
(NGS) and third-generation sequencing (TGS), have led to both a significant increase
in sequencing throughput as well as a significant reduction in cost. Nowadays, the
cost of a human genome is only a few hundred dollars and it can be sequenced
within a day.

One important part of sequencing read processing pipelines is the preprocessing
of data to improve the results of down-stream applications. This may involve
several quality control options such as trimming, filtering, and/or data modifications
like error correction and pseudo-read construction. Trimming removes adapter
nucleotides from the sequences that were added during the sequencing process.
Sequences may be filtered by a quality value given by the sequencing machine to
remove unreliable reads that are of poor quality. Error-correction aims at the removal
of sequencing errors that originate from the sequencing procedure. Lastly, paired-
end sequencing allows for the construction of a longer sequence, a pseudo-long read,
from a pair of sequences. This process is also called read extension.

With the ever increasing amount of data produced by sequencing machines 1, Bioin-
formatics can be considered Big-Data [77, 68]. Thus, scientists do not only need

1The world-wide sequencing capacity in 2015 was around 30 Peta-basepairs. More than 1 Exa-
basepairs are estimated for 2025 [77]

1

Fig. 1.1.: Sequencing costs per human genome as reported by the National Human Genome
Research Institute [@81]

accurate algorithms, but also efficient implementations of those which can cope
with the large data volume and produce results in a reasonable amount of time.
Traditionally, algorithms have been implemented in programs which execute on
the general purpose central processing unit (CPU) of a computer. The presence of
multiple compute cores within a CPU allows to execute multiple computations in
parallel to reduce processing times. However, depending on the type of workload,
this parallelization may also be achieved by the use of specialized hardware acceler-
ators like Field-Programmable Gate Arrays (FPGA) and Graphics Processing Units
(GPUs). Due to their highly parallel architectures they can thus provide a greater
processing power compared to CPUs. Yet, it is not straightforward to harness this
performance. Single-threaded algorithms and data structures designed for CPUs
are often unsuited for a parallel computing environment. In addition, hardware
accelerators typically come with less memory than ordinary CPU systems. Thus,
traditional approaches may need to be reformulated, and new parallelized building
blocks need to be developed which specifically allow for high-performance execution
on those accelerators.

2 Chapter 1 Introduction

1.2 Thesis structure

In this thesis, we present two novel algorithms for error correction and read ex-
tension of NGS data, CARE and CAREx, which have been implemented targeting
modern single-node work-stations with GPU support. Chapter 2 highlights relevant
biological concepts for this thesis, and introduces sequence similarity and CUDA GPU
programming. An overview of related bioinformatic software is given in Chapter
3. Chapters 4 - 7 present our novel GPU-accelerated error corrector CARE. Our
approach to read extension with CAREx is explained in Chapters 8 - 10. At last,
Chapters 11 and 12 give a final conclusion and thoughts on future works.

1.3 Publications

CARE, our GPU-accelerated MSA-based approach to DNA error correction was
published in [34]. It was superseded by CARE 2.0 [33] which showed how a
machine learning approach with Random Forests reduces false-positive corrections
of CARE. CARE is publicly available under https://github.com/fkallen/CARE. We
have integrated the CARE algorithm into the quality control software RabbitQCPlus
2.0 [82].

1.2 Thesis structure 3

https://github.com/fkallen/CARE

Background 2
2.1 Bioinformatics

DNA is a molecule made of two complementary strands of nucleotides which form
a double helix. Each strand has a defined direction from the so called 5′ end to
the so called 3′ end. The 5′ end of one strand is complementary to the 3′ end
of the other strand. From a computer science perspective, a DNA sequence (of
a single strand) is commonly described as a string over a four-letter alphabet
Σ = {A, C, G, T}, representing the four bases of the DNA’s nucleotides Adenine,
Cytosine, Guanine, and Thymine. The alphabet may be extended by a fifth letter
N, indicating that the base is not unambiguously determined, or simply unknown.
The reverse complement of a DNA string, i.e. the complementary strand in its
correct reading direction, is obtained by reversing it and replacing each base with
its complement base. The complement bases of A, C, G, and T are T, G, C, and A,
respectively. In bioinformatics, one often processes short substrings of length k of
a DNA sequence, so called k-mers. Given a k-mer and its reverse complement, the
canonical representation of a k-mer is the lexicographically smaller sequence.

Given that DNA sequences can be considered strings, they can be stored as plain
ASCII files. A common plain-text format for sequences is the FASTA/FASTQ format.
These files contain DNA records, so called reads. A read consists of a header, the
DNA sequence, and, in the case of FASTQ, quality scores. In this thesis, the sequence
of a read may also be referred to as read for simplicity. Quality scores have the same
length as the sequence. They represent confidence values of sequencing machines,
indicating the probability that the base at the corresponding position was called
incorrectly, known as Phred Quality Scores [15]. Given the error-probability P , the
Phred quality score Q is computed as Q = −10 · log10(P), which can subsequently
be converted into an ASCII character.

To obtain reads from a given biological sample, it needs to be sequenced. Over the
last decades, three major approaches to DNA sequencing have been developed, often
referred to as Sanger Sequencing / First Generation Sequencing, Next Generation
Sequencing / Second Generation Sequencing, and Third Generation Sequencing.
First Generation Sequencing describes the methods based on the work of Sanger [66].

5

They can produce reads of roughly 1000 base pairs (bp) with an error rate of 0.001%
. Next Generation Sequencing (NGS) technologies are high-throughput methods
which are able to process millions of DNA fragments simultaneously, producing
reads of length around 150 bp with an error rate of 0.1%. Last, Third Generation
Sequencing refers to sequencing platforms that are able to produce significantly
longer reads than previous generations, reaching lengths on the order of O(104).
A drawback of those reads, however, is an increased error rate compared to NGS
reads. Our work focuses on the processing of NGS reads produced by Illumina
machines. There can be two kinds of reads, single-end reads and paired-end reads.
With single-end sequencing, a single read is obtained per DNA fragment which can
originate from any of the two strands. In paired-end sequencing, two reads are
produced per DNA fragment, each from a different strand and from a different end
of the fragment. The outer distance between the two reads is called insert size. The
concept of paired-end sequencing is shown in Figure 2.1.

P

A

P

A

P

C

P

T

P

C

H

P

G

P

A

P

G

P

T

P

T

H

5‘ 3‘

5‘
3‘

Paired-end
sequencing

@readpair1 /1
AAC
+
FFF

@readpair1 /2
GAG
+
FFF

Reads in FASTQ format

Fig. 2.1.: Paired-end sequencing of a DNA fragment. Typically, not the full fragment length
is sequenced per strand.

Another important aspect of sequencing is the depth of coverage. The dataset
coverage can be computed as readlength·numreads

genomesize . It describes the average number of
reads that cover the same position in the genome assuming uniform sequencing of
the whole genome. A typical coverage is 30. A dataset with 30-fold coverage of a
human genome, which has a length of around 3 ·109 basepairs, could comprise of, for

6 Chapter 2 Background

example, 900, 000, 000 reads of length 100. Note that datasets may have non-uniform
coverage distributions, i.e. different genome regions may have different sequencing
depths.

2.2 Sequence similarity and sequence alignment

A common problem in bioinformatic applications is to decide whether two or more
sequences are similar to each other or not. More generally speaking one seeks
to assign a similarity score to a set of sequences. This section introduces scoring
functions relevant to this thesis, namely hamming distance and sequence alignment.
The computation of a hamming distance is simple and fast, but may fall short to
alignment algorithms in the bioinformatic context.

2.2.1 Hamming Distance

Let S1 and S2 be two strings of equal length n over the same alphabet. Then the
hamming distance H(S1, S2) is defined as the number of positions with mismatching
characters between S1 and S2. The hamming distance can be computed in O(n).

H(S1, S2) =
n−1∑
i=0

(S1[i] ̸= S2[i])

For example, the hamming distance between CCGATA and CGTTAA is 4. There is a
mismatch at position 1, 2, 3, and 4.

2.2.2 Pair-wise sequence alignment

A shortcoming of the hamming distance is the assumption that the i-th character
of one sequence must correspond to the i-th character of the other sequence. In
general, this may not be the case. In bioinformatics both natural biological mutations
and artificial errors caused by the sequencing process can introduce insertions and
/ or deletions (so called indels) into a sequence, i.e characters could be added or
removed. Thus, a different algorithm is required to compute accurate similarity
scores in the presence of indels to allow for a comparison between S1[i] and S2[j]
where i ̸= j. One such metric which includes indels is the Levenshtein-distance,
also known as edit-distance. The edit-distance of a pair of sequences S1 and S2 is

2.2 Sequence similarity and sequence alignment 7

the minimum number of modifications which need to be applied to S1 to obtain
S2. A modification is either a character substitution, a character insertion, or a
character deletion. For example, the sequence CCGATA can be transformed into
CGTTAA using a minimum of three modifications: one deletion, one substitution, and
one insertion.

CCGATA → CGATA → CGTTA → CGTTAA

The sequence alignment algorithm with linear gap penalty is a generalization of
the edit-distance algorithm which allows for arbitrary penalty costs of matches,
substitutions, and indels. In contrast, the edit distance uses a fixed cost of 1 for
substitutions and indels, and a cost of 0 for matching characters. When a cost
function is used the best alignment is the alignment with the smallest total costs.
Equivalently, a sequence alignment can be computed using a scoring function instead
of a cost function. In this case, the optimal solution has the greatest total score.
Sequence alignment problems are described by a set of recurrence relations which
can be solved using dynamic programming.

Global alignment

Let S1 and S2 be two strings of length l1 = |S1| and l2 = |S2|, respectively, over the
same alphabet Σ. Let δ : (Σ ∪ {−}, Σ ∪ {−}) → Z be a scoring function. A global
sequence alignment A(S1, S2, δ) is a 2 × k matrix over Σ ∪ {−} with two rows and
k columns where max(l1, l2) ≤ k ≤ l1 + l2. The alignment score is then calculated
as sum of function δ applied to the two characters of each column.

An example alignment of sequences S1 = CCGATACAGCTG and S2 = CGTTAACTG with
a score of 9 is given by the following table. It uses a score of 2 for matches, −1 for
mismatches, and −2 for gaps.

S1 C C G A T A C A G C T G
S2 - C G T T A - A - C T G

δ(S1[i], S2[i]) −2 2 2 −1 2 2 −2 2 −2 2 2 2

In general, the optimal global sequence alignment score oi,j of prefixes S1[1 : i] and
S2[1 : j] is defined by the following recurrence relation.

8 Chapter 2 Background

oi,j = max

oi−1,j + δ(S1[i], −)

oi,j−1 + δ(−, S2[j])

oi−1,j−1 + δ(S1[i], S2[j])

It is initialized with values o0,0 = 0, oi,0 =
∑i

x=1 δ(S1[x], −) for 1 ≤ i ≤ l1, and
o0,j =

∑j
y=1 δ(−, S2[y]) for 1 ≤ j ≤ l2. The optimal alignment score for the

alignment of the full strings is given by ol1,l2. This recurrence can be solved in
O(l1 · l2) with dynamic programming using the Needleman-Wunsch algorithm.

Semi-global alignment

Sometimes one wishes to align a sequence to the interior of a significantly longer
sequence, for example in the context of read mapping. This could result in many
gaps added to the begin and to the end of the shorter sequence because of the
length difference. The computation of a global alignment will penalize each of
those gaps which may easily dominate an otherwise good alignment with many
matches. Similar issues may arise when considering an alignment of a suffix of one
sequence to a prefix of another sequence. Since gaps will be added after the end of
the suffix sequence and in front of the begin of the prefix sequence, the alignment
score may not accurately represent the region of interest. The semi-global alignment
solves those issues by assigning a penalty of 0 to all gaps that occur before the
first sequence character, and after the last sequence character, respectively. This
is achieved by modifications to the global alignment recurrence. First, oi,0 = 0,
o0,j = 0 ∀i, j. This change allows free gaps at the begin to reach the region of
interest without costs. Then the optimal semi-global alignment score between S1
and S2 is computed as max(max

0≤i≤l1
(oi,l2), max

0≤j≤l2
(ol1,j)) . By computing the maximum

of those values, penalizing gaps at the end of sequences are ignored. For example,
using the same scoring function δ as in the previous example, an optimal semi-global
alignment of TAGTT and TTT has a score of 4. The corresponding global alignment
score would be −1.

S1 T A G T T -
S2 - - - T T T

δ(S1[i], S2[i]) 0 0 0 2 2 0

2.2 Sequence similarity and sequence alignment 9

2.2.3 Multiple-sequence alignment

The concept of pair-wise sequence alignment can be generalized to more than
two sequences. Assume for brevity that all sequences are of same length n. A
multiple-sequence alignment (MSA) of m sequences is a m × k matrix with m

rows and k columns where n ≤ k ≤ m · n. Its computation can be expressed
as a recurrence relation analogous to the previous pair-wise alignments, where
the scoring function δ takes m inputs, each input taken from a different sequence.
Following the same dynamic programming approach, an optimal MSA can then be
computed in O((2m − 1) · (nm)) using a generalized Needleman-Wunsch algorithm.
The exponential runtime makes it infeasible to compute exact MSAs of a larger
collection of sequences. Additionally, the problem of finding an optimal MSA has
been proven NP-hard [8]. This implies that it is unknown whether a polynomial-time
algorithm for MSA computation exists. However, a polynomial-time approximation
algorithm is known. The STAR approximation algorithm [19] constructs MSAs with
approximation ratio of 2 in O(m2 · n2). Briefly, the algorithm works as follows.

1. Compute an optimal pair-wise alignment for each pair of sequences O(m2 · n2)

2. Select an anchor sequence A which aligns the best to all other sequences
O(m2)

3. Use the m − 1 pair-wise alignments of A to progressively construct the MSA
with m rows. O(m · n)

A simple application of an MSA would be the computation of a consensus string.
The consensus string consists of the most frequent character of each column. In
general, MSAs can be used to detect patterns common to multiple sequences which
cannot be determined by simple pair-wise alignments. This can be utilized, for
example, for phylogenetic analysis and the detection of genetic mutations such as
single nucleotide polymorphisms (SNP). Figure 2.2 shows an example MSA.

10 Chapter 2 Background

S1 - C A G G T C

S2 - G A G G - A

S3 - G A C T C A

S4 - T A C G - A

S5 A G A T G - -

Consensus - G A G G - A

A 0.2 0 1.0 0 0 0 0.6

C 0 0.2 0 0.4 0 0.2 0.2

G 0 0.6 0 0.4 0.8 0 0

T 0 0.2 0 0.2 0.2 0.2 0

- 0.8 0 0 0 0 0.6 0.2

Fig. 2.2.: An MSA of five sequences with its consensus string and its probability profile.

2.3 GPU computing

Graphics Processing Units (GPUs) are co-processors which have been traditionally
used to accelerate computer graphic operations. General Purpose Computation
on Graphics Processing Unit (GPGPU) allows us to utilize the available hardware
resources for custom operations with a high degree of parallelism. The main
differences between CPUs and GPUs lie in the number of cores and the type of
accessible memory. CPUs typically come with a few tens of cores. Current high-end
server CPUs may have 128 cores like an AMD EPYC 9754 processor. In contrast, both
consumer-grade and server-grade high-end GPUs, for example NVIDIA RTX 4090,
NVIDIA H100, or AMD Instinct MI250X, consist of more than ten thousand cores.
In terms of memory, GPUs have access to faster memory such as high bandwidth
memory (HBM) with transfer rates of over 3 TB/s on an NVIDIA H100 GPU, but the
amount of memory on a single graphics card is limited to around 80GB, although
multiple cards may be used to increase the total available memory. On the other
hand, CPU memory like DDR5 memory provides much smaller transfer rates, but

2.3 GPU computing 11

server-scale boards can fit more than 1TB of memory. For example, a memory
bandwidth of 460 GB/s can be achieved by a single AMD EPYC 9754 CPU which
supports up to 6 TB of memory.

GPUs can be programmed with different frameworks. OpenCL provides a general
API for heterogeneous programming. OpenCL code can be executed on different
kinds of hardware as long as vendor-specific drivers exist, which is the case for,
amongst others, Intel CPUs, AMD CPUs, AMD GPUs, and NVIDIA GPUs. NVIDIA
CUDA is a programming language that targets exclusively NVIDIA GPUs. AMD’s
counterpart to CUDA is its ROCm platform that supports both AMD CPUs and GPUs.
In addition, it provides the high-level API HIP which can be translated to OpenCL
targeting AMD hardware, or translated to CUDA targeting NVIDIA hardware.

In this thesis, we used CUDA to parallelize our software. However, the general
concepts of our parallelization schemes can be applied in any of the APIs mentioned
above. In the remainder of this section, we will give a brief introduction into the
CUDA programming model and how CUDA programs are executed on hardware.
For more detailed information, we refer to the official CUDA programming guide
[@56].

CUDA Programming model

CUDA C++ is an extension to the C++ programming language that allows to write
C++ code which can be executed on NVIDIA GPUs. It is compiled by specific com-
pilers such as NVCC. CUDA adds execution space identifiers __host__, __device__,
__host__ __device__, and __global__, that can be used to annotate functions.
Functions without annotation or with annotation __host__ can only be called from
CPU code. Functions with __device__ can only be called from GPU code. Specifying
both indicates that the function can be called on both CPU and GPU. We call code
that executes on the CPU host code. Device code is executed on the GPU.

The entry point to GPU code is given by functions annotated with __global__, so
called kernels. Kernels are functions that are called via CUDA API on the host, but
are executed on the device with a user-specified number of threads. The GPU driver
is responsible for executing the function on the device. The number of specified
threads is allowed to be greater than the number of threads that can physically
be executed in parallel on the hardware. Kernel execution is asynchronous with
respect to the host. To wait for the completion of a kernel, host code must make a
synchronizing CUDA API call, for example cudaDeviceSynchronize, which blocks
execution of the host thread until the GPU finished its processing.

12 Chapter 2 Background

The device-accessible GPU memory can be logically separated into three memory
spaces, global memory, shared memory, and local memory. Local memory is only
accessible by a single kernel thread. Shared memory is accessible by groups of
kernel threads. All kernel threads can access global memory. Typically, GPU and
CPU use distinct memory address spaces which means ordinary CPU memory is
not accessible by device code, and vice-versa. This requires the programmer to
manually allocate GPU-accessible memory and explicitly transfer data to it for kernel
inputs and retrieve data from it to obtain the kernel outputs. cudaMalloc and
cudaMemcpy are functions that can be used from the host to allocate GPU memory in
the global memory space, and to transfer data to and from this memory, respectively.
Both functions have asynchronous versions that may return before the operation in
question is completed, in the same manner as kernel launches. In addition, both
operations may execute in parallel to kernels which are executing on the GPU. This
allows for complete overlap between GPU kernels, data transfers, and host-side
work. Shared memory and local memory cannot be modified from the host.

GPU threads in a kernel can execute independently and are hierarchically organized.
At the lowest level there are the individual threads. 32 consecutive threads are called
a warp. A thread block consists of up to 32 warps which is equal to 1024 threads
per block. At the top level, there is the grid which contains all thread blocks. The
Hopper GPU architecture added support for an intermediate level between thread
blocks and the grid, the so called thread block cluster which groups consecutive
thread blocks. CUDA provides built-in variables which allow to compute a unique
thread identifier for all threads in the kernel in all levels of the thread hierarchy.
When a kernel is called from the host, it is mandatory to specify the total number of
thread blocks in the grid, as well as the total number of threads per thread block.

Within each level of the thread hierarchy, threads can communicate, collaborate, and
synchronize, with efficiency decreasing towards the top of the hierarchy. Threads
within a warp execute in SIMT fashion (single instruction, multiple threads). They
are able to efficiently exchange data amongst each other via so called warp-shuffle
operations. The function __syncwarp acts as a barrier for all threads within a warp,
i.e. it synchronizes their execution. The function __syncthreads synchronizes all
threads within a thread block. Threads belonging to different warps within the
same thread block can exchange data via the shared memory which is slower than
warp shuffles, but faster than accessing device-wide global memory. Shared memory
is shared between all threads within a thread block. Apart from communication
between threads, it can be used as fast scratch-pad memory or a manually managed
cache for frequently used data. All thread blocks have at least 48 KB of shared
memory available. The upper limit is dependent on the GPU architecture. The

2.3 GPU computing 13

largest amount of shared memory per thread block is provided by the newest Hopper
architecture (227 KB). Thread blocks have access to the shared memory of the other
thread blocks within the same thread block cluster. Threads in different thread block
clusters can only communicate and be synchronized via global memory, which is
less efficient than shared memory-based cooperation within a thread block or thread
block cluster.

CUDA can make use of multiple GPUs to further increase processing capabilities
and available device memory. Data locality plays an important role in multi-GPU
computations. For trivially parallelizable algorithms where each GPU can hold its
required data the performance scales linearly with the number of GPUs. In general,
however, data dependencies between GPUs lead to performance penalties. While
each GPU is able to access data resident on a different GPU, those remote device
memory accesses, enabled by hardware interconnects, are several times slower than
local accesses. This places a burden on developers to find the best distribution
of data amongst the GPUs, and may require the use of communication collectives
like broadcast and all-to-all to efficiently move data between GPUs. Large-scale
datasets in bioinformatics may not fit into the memory of a single GPU and either
must be stored in ordinary host memory and be transferred on demand, or be
distributed amongst multiple GPUs. Although memory requirements can be reduced
by employing techniques like data compression, dealing with large datasets remains
challenging.

To give an example of a parallel algorithm, we take a brief look at a parallel reduction.
It is commonly used to compute the sum of all input values. Figure 2.3 shows the
concepts of a block-wide parallel summation assuming four threads per warp. Each
warp loads a chunk of input data into registers. Each thread can access data of
other threads within the warp via shuffle operations to incrementally compute a
warp-wide partial sum. The partial sums of each warp are stored in shared memory.
A synchronization barrier ensures that each warp stored its sum before a single
warp computes the final block-wide sum. To extend this approach to a grid-wide
reduction (without considering thread block clusters), each thread block needs to
store its partial sum to global memory. After a grid-wide synchronization barrier, a
single thread block can load the intermediate results and computes the final result.

14 Chapter 2 Background

1 1 1 1

2 2

4

1 1 1 1

4

warp-sum

Shared memory

1 1 1 1 1 1 1 1

warp-sum warp-sum

4 4

1 1 1 1 1 1 1 1

warp-sum warp-sum

4 4

warp-sum

16Block-wide synchronization

block-sum

Fig. 2.3.: A block-wide parallel reduction

CUDA hardware implementation

While the hardware implementation exists separately from the programming model,
achieving best performance in GPU programming requires knowledge of the underly-
ing hardware, similar to ordinary CPU programming. From a hardware perspective,
kernels are executed on NVIDIA GPUs by Streaming Multiprocessors (SMs). At its
heart an SM consists of data processing units, a register file comprising of 65536
32-bit registers, and a unified data cache which serves as shared memory for thread
blocks as well as an L1 cache. Multiple SMs share a portion of the GPU’s L2 cache.
The software-side thread blocks are assigned to SMs for execution. The scheduling
order of thread blocks to SMs is unspecified. Multiple thread blocks can be executed
on an SM in parallel. When a thread block finishes execution, the next thread block
is assigned to the SM. The software-side global and local memory spaces reside in
off-chip DRAM. DRAM accesses are cached in the L2 cache. The shared memory
space corresponds the shared memory provided by an SM.

The number of thread blocks which can be executed in parallel on one SM is limited
by the available hardware resources. To give an example, assume that the number of
threads per block is 256 and each thread requires 128 32-bit registers for execution.
Then at most 65536/(256 ∗ 128) = 2 thread blocks can be executed in parallel on the

2.3 GPU computing 15

same SM. In the same manner, another upper limit can be derived from the available
shared memory per SM.

Recall that thread blocks are partitioned into warps of size 32. At each GPU clock
cycle, warp schedulers select a number of warps of the assigned thread blocks
to execute their next instruction. Since the whole execution state of a warp is
stored in the large register file, execution of different warps can be interleaved via
zero-overhead context switches. This is crucial for high throughput as it allows to
schedule instructions from a different warp while another warp may be stalled on a
data dependency or execution dependency. The maximum number of warps that
can issue an instruction per clock cycle is hardware-dependent.

16 Chapter 2 Background

Related Work 3
With continuous sequencing efforts in recent decades, error correction is not a new
research topic but has been studied for many years. One important use-case for error
correction is genome assembly [60] where a genome is constructed from sequenc-
ing reads. Genome assemblers often perform error correction with an integrated
algorithm [75, 4, 50, 84] but there also exist many stand-alone programs for the
error correction of DNA sequences which may also be used in different bioinformatic
pipelines that are susceptible to sequencing errors, for example, genotyping and
variant calling.

Here, we will give a brief overview of error correctors and their employed data-
structures. A summary is given in Table 3.1. A more detailed survey of tools and
strategies can be found, for example, in [38].

Name Data structure Target error type
NGS

SGA [75] FM-index substitutions
Musket [46] BF+HT substitutions
RACER [25] HT substitutions
Lighter [76] BF substitutions
BFC [39] BF+HT substitutions
BLESS [20] BF+HT substitutions
RECKONER [13] BF+HT substitutions
HiTEC [26] SA substitutions
Bcool [42] DBG substitutions
DecGPU [48] BF substitutions
Blue [17] HT substitutions + indels
Coral [65] HT substitutions + indels
ECHO [35] HT substitutions + indels
Fiona [69] SA substitutions + indels
Karect [2] SA substitutions + indels

TGS
FMLRC [80] (hybrid) FM-index substitutions + indels
LoRDEC [64] (hybrid) DBG substitutions + indels

Tab. 3.1.: Selection of error correction tools for NGS data and TGS data with their type
of corrected errors and the key utilized data-structure: Bloom filter (BF), Hash
table (HT), Suffix Array (SA), FM-index, and De Bruijn graph (DBG).

17

A frequently used approach in error correction, for example by Musket and BFC,
utilizes hash tables and / or bloom filters to derive a "ground truth" from the dataset
which is subsequently used as a reference to modify the dataset in concordance
with the ground truth. Hash tables can also be used for similarity searches, for
example in Coral or Echo, to find similar reads which could be subsequently used
in a consensus-based error correction. Other approaches may use text matching
techniques to index the whole dataset to allow for efficient searches of common
patterns. HiTEC and Karect employ a suffix tree whereas SGA constructs an FM-
index. Bcool follows the approach of genome assemblers and uses a De Bruijn graph
to derive corrected sequences. One of the earliest GPU-accelerated error correctors
is CUDA-EC [72] which uses a bloom filter to reduce memory consumption. DecGPU
uses a combination of CUDA and MPI for parallel distributed error correction of
large datasets to overcome the memory limitations of a single GPU, which still poses
a problem today. Machine learning is used in many different areas of bioinformatics,
for example in protein folding [30], medical image classification [41], and DNA
language modeling [29]. In the context of DNA error correction, LERNA [71]
uses a transformer-based language model for DNA to aid the selection of program
parameters of error corrector. To the best of our knowledge, we are one of the first
to use machine learning within a DNA error correction algorithm.

From Table 3.1 it is also apparent that there are different types of sequencing errors.
Error-correction software may specialize in the processing of different types of errors.
NGS data contains orders-of-magnitude fewer insertions and deletions (indels) than
substitutions. Thus, many tools only focus on substitutions. Nonetheless, there
are algorithms which consider the presence of indels. The ability to correct indels
becomes especially important for TGS reads. The approaches for TGS error correction
typically involve self-correction [10] or a hybrid correction. With hybrid correction,
employed for example in FMLRC and LoRDEC, higher-quality NGS reads are mapped
to the TGS reads to perform a consensus-based correction. Self-correction only uses
the present TGS reads for correction. This is often achieved by computing pair-wise
alignments between the reads and constructing multiple-sequence alignments.

Many applications need to quickly identify similar sequences, for example to con-
struct a multiple-sequence alignment. The brute-force approach of comparing all
pairs of sequences in a dataset typically is computationally infeasible due to the
size of datasets which can contain millions of sequences. More efficient similarity
searches based on short substrings of fixed length can be implemented with look-up
tables. In the most simple case, all such substrings are generated for all sequences
and inserted into a table that can be queried to find sequences which contain specific
substrings. These match locations can then be inspected further. However, storing

18 Chapter 3 Related Work

all substrings may require vast amounts of memory. Memory requirements can be
reduced by using sub-sampling techniques. A group of substrings could be repre-
sented by a minimizer [63] which is the lexicographically smallest substring in the
group. Then, only those minimizers are stored in the lookup table. Minhashing
is a specific locality-sensitive hashing sub-sampling technique that was originally
introduced by search engines to detect near duplicate web pages [9]. In minhashing,
a hash value is computed for each substring within a group. Then, the h smallest
hash values, called a signature, represent the group, and allow the approximation of
the Jaccard index between two groups of substrings. In recent years, minhashing
has gained popularity for processing NGS data with examples including genome
assembly [6], metagenomics [58, 54], and read mapping [61]. Our work utilizes a
variant of minhashing. We believe to be the first to adapt this concept in the context
of error correction.

When performing genome analysis aided by sequence data, in general only structures
smaller than the read length can be resolved correctly. A drawback of NGS reads
compared to Sanger reads or TGS reads is their relatively short length (∼ 150bp
(NGS), ∼ 1000bp (Sanger), > 10, 000bp (TGS)) which complicates or prohibits the
identification of larger structures within a genome. This can lead to issues in the
detection of structural variants [52] or in the treatment of repeat regions during
genome assembly. Conceptually, genome assemblers already perform read extension
since the resulting contigs are super-strings of the reads from which longer reads
could be extracted. In fact, many tools for read extension employ techniques used in
genome assembly, read overlapping and De Bruijn graphs, to produce longer reads.
For example, one could identify similar reads which subsequently can be overlapped
and merged to create a longer read. ELOPER [73] and GapFiller [55] realize this
approach by using hash tables. Konnector2 [79] constructs a De Bruijn graph of the
whole dataset and performs a graph traversal to extract longer sequences.

Many of the previously mentioned tools come with limitations in terms of result
quality and / or processing speed. In terms of quality, a problem which can observed
for error correction is high numbers of newly introduced errors (false positive
corrections). For read extension, some tools may only be able to process a small
fraction of the input. Performance problems include bad scaling with input data size,
insufficient parallel efficiency, or even lack of parallelization. Also, the vast majority
of tools are purely CPU-based. While this is not a problem per se, these tools do not
leverage the opportunity of faster processing on additional hardware. For relevant
datasets such as Human datasets with 30-fold coverage, this leads to runtimes that
can range from hours to days. For example, the error correctors Musket and BFC
take 3 hours and 1.5 hours, respectively, on a CPU with 64 threads. Read extender

19

Konnector2 takes over a day to complete. In contrast, our proposed error corrector
CARE and read extender CAREx complete in 30 minutes and 3.3 hours, respectively,
on a single A100 GPU. CARE is further able to utilize multi-GPU systems to reduce
the runtime to 10 minutes.

Besides error correction and read extension, many other areas of NGS processing
benefit from the fast processing on GPUs for compute-intensive applications. NVIDIA
Clara Parabricks [@57] is a software suite that provides GPU-accelerated implemen-
tations of commonly used CPU-based programs for NGS read analysis such as read
mapping or variant calling. Google’s DeepVariant [62] is a deep-learning based vari-
ant caller with GPU support. CUDA ClustalW [24] and GPU-ClustalW [45] provide
a parallel implementation of the well known ClustalW algorithm for progressive
multiple-sequence alignment construction [78]. Short-read alignment and similarity
searches are accelerated in Cushaw [47], SOAP3 [44], and CUDASW++ [49]. Fast
meta-genomic classification is provided by MetaCache-GPU [36].

20 Chapter 3 Related Work

Part I

Sequencing read error correction

CARE: Context-Aware Read
Error correction

4

Modern sequencing technologies can produce high-coverage datasets consisting of
many millions or even billions of short sequencing reads. Produced reads, however,
are not perfect but are affected by noise which manifests in the form of sequencing
errors. Such errors can affect down-stream analysis in a negative way. Error
correction software is often employed to remove many of these sequencing errors
making it an important building block in sequence processing pipelines including
genome assembly [21] and SNP calling [16].

CARE, context-aware read error correction, is an MSA-based error corrector for NGS
HiSeq Illumina reads. Given a collection of n reads, a multiple-sequence alignment
is constructed per read, the so called anchor read. This MSA contains the anchor
read which should be corrected, as well as other reads which are assumed to be
similar to that read. Then, a corrected anchor read can be extracted from the MSA
using its consensus information.

In a naive approach, finding all sets of similar reads in a collection of n reads
requires the computation of O(n2) pair-wise sequence alignments, discarding those
alignments with a low similarity score. However, with datasets consisting of millions
of reads, this naive approach is infeasible. CARE relies on hash tables to find
potentially similar reads instead of computing all pair-wise alignments. This is done
in a two-phase approach with a hashing scheme similar to minhashing. First, hash
values of all reads are stored in a database, i.e. hash tables. Then, a set of potentially
similar reads can be found by querying this database for the hash values of an anchor
read. In a follow-up operation, pair-wise alignments are computed between the
anchor read and potentially similar reads to discard dissimilar reads. While this
approach may not find all similar reads in the collection of reads, it is preferred over
the naive approach because the number of similar reads is significantly less than n,
i.e. the total number of required alignment computations is reduced drastically.

23

4.1 Publications

Parts of the work presented in Chapters 4, 5, and 6 have been published in the
following peer-reviewed papers. Some text fragments, examples and results are
directly taken from the papers. This thesis gives additional implementation details
and includes a multi-GPU implementation. Chapter 5 extends the results presented
in the papers. Chapter 6 investigates the performance of different parallelization
approaches and compares the runtimes of CARE to its competitors.

CARE: context-aware sequencing read error correction.
Felix Kallenborn, Andreas Hildebrandt, Bertil Schmidt.
Bioinformatics, Volume 37, Issue 7, March 2021, Pages 889–895.
https://doi.org/10.1093/bioinformatics/btaa738

CARE 2.0: reducing false-positive sequencing error corrections using machine
learning.
Felix Kallenborn, Julian Cascitti, Bertil Schmidt.
BMC Bioinformatics volume 23, Article number: 227 (2022).
https://doi.org/10.1186/s12859-022-04754-3

RabbitQCPlus 2.0: More Efficient and Versatile Quality Control for Sequencing
Data.
Lifeng Yan, Zekun Yin, Hao Zhang, et al.
Methods, Volume 216, August 2023, Pages 39-50.
https://doi.org/10.1186/s12859-022-04754-3

Abstract – Next-generation sequencing pipelines often perform error correction as
a preprocessing step to obtain cleaned input data. State-of-the-art error correction
programs are able to reliably detect and correct the majority of sequencing errors.
However, they also introduce new errors by making false-positive corrections. These
correction mistakes can have negative impact on downstream analysis, such as k-mer
statistics, de-novo assembly, and variant calling. This motivates the need for more
precise error correction tools. We present CARE 2.0, a context-aware read error
correction tool based on multiple-sequence alignment targeting Illumina datasets. In
addition to a number of newly introduced optimizations its most significant change
is the replacement of CARE 1.0’s hand-crafted correction conditions with a novel
classifier based on random decision forests trained on Illumina data. This results in

24 Chapter 4 CARE: Context-Aware Read Error correction

https://doi.org/10.1093/bioinformatics/btaa738
https://doi.org/10.1186/s12859-022-04754-3
https://doi.org/10.1186/s12859-022-04754-3

up to two orders-of-magnitude fewer false-positive corrections compared to other
state-of-the-art error correction software. At the same time, CARE 2.0 is able to
achieve high numbers of true-positive corrections comparable to its competitors. On
a simulated full human dataset with 914M reads CARE 2.0 generates only 1.2M
false positives (FPs) (and 801.4M true positives (TPs)) at a highly competitive
runtime while the best corrections achieved by other state-of-the-art tools contain
at least 3.9M FPs and at most 814.5M TPs. Better de-novo assembly and improved
k-mer analysis show the applicability of CARE 2.0 to real-world data. False-positive
corrections can negatively influence down-stream analysis. The precision of CARE
2.0 greatly reduces the number of those corrections compared to other state-of-
the-art programs including BFC, Karect, Musket, Bcool, SGA, and Lighter. Thus,
higher-quality datasets are produced which improve k-mer analysis and de-novo
assembly in real-world datasets which demonstrates the applicability of machine
learning techniques in the context of sequencing read error correction.

4.2 Related Work

Current state-of-the-art error correctors are often classified by their underlying
algorithmic approach into k-mer-based and MSA-based methods.

4.2.1 K-mer-based methods

A k-mer is a substring of length k of a genomic sequence. In a k-mer-based approach
the k-mer spectrum of a collection of sequencing reads is inspected to identify k-mers
which are error-free with high confidence, so-called solid k-mers. k-mers which are
not solid are called weak. Often, k-mers are distinguished as solid or weak based on
their frequency in the dataset given a supplied frequency threshold. k-mers which
reach the threshold are considered solid. k-mer-based error correction algorithms
typically try to replace weak k-mers by similar solid k-mers. Figure 4.1 gives an
example of k-mer-based error correction.

While this approach is simple and fast, it usually suffers from a great number of
false-positive (FP) corrections because low frequency correct, but weak, k-mers may
be changed into erroneous, but solid k-mers which appear more often. Due to its
simplicity, this approach is used in many error correction tools such as SGA-EC [75],
Musket [46], RACER [25], Lighter [76], Blue [17], BFC [39], BLESS 2 [20], and
RECKONER [13].

4.2 Related Work 25

K-mer frequency

N
u

m
b

er
 o

f
d

is
ti

n
ct

 k
-m

er
s

W
ea

k
k-

m
er

s

So
lid

 k
-m

er
s

3-mer Frequency

ACA 12

CAA 1

AAG 11

AGT 10

ACT 11

CTA 10

TAG 12

ACAAGT

ACTAGT

Replace weak 3-mer
by solid 3-mer

Fig. 4.1.: Left: k-mer frequency histogram. A frequency threshold separates weak k-mers
(yellow) from solid k-mers (green). Right: k-mer based modification of a se-
quence.

4.2.2 MSA-based methods

MSA-based algorithms identify groups of similar sequences and arrange them in a
multiple-sequence alignment (MSA). In contrast to changing individual k-mers in
isolation, MSA-based error correction utilizes the additional information contained
in the MSA, such as per-column coverage, and sequence contents of positions
surrounding a potentially erroneous position. This typically allows for higher error
correction precision. However, a major drawback of the MSA-based approach is
its high computational complexity to construct MSAs. The first MSA-based error
correctors specifically designed for Illumina data were Coral [65] and ECHO [35].
More recent examples of alignment-based error correctors are Fiona [69], Karect
[2], Bcool [42], BrownieCorrector [22].

4.3 Algorithm

The CARE algorithm takes an input file with sequences in FASTA or FASTQ format
and produces an output file consisting of corrected reads. There are three processing
steps: construction phase, correction phase, and output phase. In the construction
phase, the input sequences are loaded into memory, and hash tables are constructed

26 Chapter 4 CARE: Context-Aware Read Error correction

from the sequences. The correction phase is the core of the algorithm. Here, cor-
rected reads are computed. Finally, in the output phase an output file is constructed
from the corrected reads. The three steps will now be explained in detail.

4.3.1 Construction phase

The goal of the construction phase is to load the input reads from file into memory,
and to provide populated hash tables of those reads for similarity search.

CARE uses a variant of minhashing to hash the n reads. The hashing process is
configured by two parameters, the number of hash functions and hash tables h, and
the k-mer size k. Let H = f1, . . . , fh be a set of h hash functions. For each read ri, a
read signature S is computed from the canonical k-mers of read ri. This signature
consists of h hash values. S[m] is computed as the smallest observed hash value
with hash function fm. Note that more than one value of S could be computed
from the same k-mer of ri because hash functions are applied independently. Finally,
the key-value pair (S[m], i) is inserted into the m-th hash table. After construction
of the hash tables, they store information about which reads share at least one
common hash value. This is a good indicator that those reads share a common k-mer.
However, because of hash collisions this may not always be the case.

4.3.2 Correction phase

During the correction phase each read of the input data is processed to compute a
corrected read. The correction of a read depends on the redundant information in
the dataset. It is quantified by the dataset coverage c which is the average sampling
depth of each position in the genome, i.e. each position of the genome is covered
by c reads on average. For high values of c, a single error at a specific position can
then be identified by a simple majority vote. For example, if 1 out of 30 samples
contains a different nucleotide, that one nucleotide could be replaced by that of the
remaining 29 samples. Such a majority vote requires that all participating reads
originate from the same location. To find those reads, the previously constructed
hash tables are utilized, followed by several filters to remove bad reads. In the
remainder of this section, it is explained how input read ri is corrected. ri is also
referred to as anchor read. Figure 4.2 shows the workflow of the algorithm.

4.3 Algorithm 27

H
a

sh

h
4

R
e
ad

ID
s

r 3
, r

9
, r

1
9

r 3
, r

9
, r

2
0

r 3
, r

9
, r

1
2

r 1
r 3

, r
9
, r

1
5

r 8
, r

1
3

r 3
, r

9
, r

1
4

r 3
, r

9
, r

1
1

H
a

sh

h
3

R
e
ad

ID
s

r 3
,

r 3
, r

8
, r

9

r 5
, r

7

r 1
r 3

, r
9
, r

1
6

r 8
, r

1
3

r 3
, r

9
, r

1
2

r 6
, r

4

r 2

H
a

sh

h
2

R
e
ad

ID
s

r 3
, r

9
, r

1
7

r 5
, r

7

r 1
r 3

, r
9
, r

1
1

r 8
, r

1
3

r 3
, r

9
, r

1
0

r 6
, r

4

r 2

r i

an
ch

o
r

re
ad

si
gn

at
u

re
q

u
er

y

H
a

sh

h
1

R
e
ad

ID
s

r 3
, r

9
, r

1
2

r 5
, r

7

r 1

r 8
, r

1
3

r 6
, r

4

r 2

ca
n

d
id

at
e

re
ad

se
t
C

(r
i)

=
{r

8
, r

3
1
,

r 3
7
, r

1
3
, r

9
, r

2
, r

7
, r

2
2
, r

1
5
, r

2
0
, r

1
8
}

ca
n

d
id

at
e

re
ad

fi
lt

er

fi
lt

er
ed

ca
n

d
id

at
e

se
t

F(
r i)

 =
 {
r 8

, r
1

3
, r

9
, r

2
, r

2
2
, r

1
5
}

M
SA

 c
o

n
st

ru
ct

io
n

an
d

 r
ef

in
em

en
t

co
rr

ec
ti

o
n co

rr
ec

te
d

an
ch

o
r

re
ad

:
r i:

 C
T
G
G
C
A
A
T
T
A
G
T
C
A
C
C

co
rr

ec
te

d
ca

n
d

id
at

e
re

ad
s:

r 2
: T
C
T
G
G
C
A
A
T
T
A
G
T
C
A
C

(a
)

(b
)

(c
)

(d
)

r 1
3

A
T
T
C
T
G
G
C
A
A
T
T
A
G
T
C

r 2
T
C
T
G
C
C
A
A
T
T
A
G
T
C
A
C

r i
C
T
G
G
C
A
G
T
T
A
G
T
C
A
C
C

r 9
G
G
C
A
A
T
T
A
G
T
C
A
C
C
A
T

P
re

-t
ra

in
ed

ra
n

d
o

m
fo

re
st

5
‘

3
‘

3
‘

5
‘

Pa
ir

ed
-e

n
d

 in
fo

rm
at

io
n

Fig. 4.2.: Workflow of CARE: (a) The signature of an anchor read (ri) is determined by
minhashing and used to query the precomputed hash tables. The retrieved
reads form the candidate read set C(ri). (b) All reads in C(ri) are aligned
to ri. Reads with a relatively low semi-global pair-wise alignment quality are
removed, resulting in the filtered set of candidate reads (F (ri)). (c) The initial
MSA is constructed around the center ri using F (ri). The MSA is refined by
removing candidate reads with a significantly different pattern from the anchor
(i.e. r15, r22, r7 in the example). (d) The anchor read (the seventh nucleotide
in ri in the example) and optionally some of the candidates are corrected (the
fifth nucleotide in r2 in the example), using a provided random forest trained for
correction.

28 Chapter 4 CARE: Context-Aware Read Error correction

Computation of an initial candidate set

At first, the read hash signature S of size h is computed a second time. The hash
value S[m] is queried in hash table m. Each query yields a set of ids of reads which
share the same hash value at position m of their respective read signature. Let Ci be
the union of all h query results. The reads (or read ids, to be more precise) in Ci are
called candidate reads.

Subsequently, each candidate read is aligned to the anchor read to identify candidate
reads which are similar to ri and overlap ri by at least 30% of positions. In addition,
the alignment indicates their relative orientation to ri, i.e. whether the candidate
read and the anchor read are located on the same DNA strand or on complementary
strands. The latter information is found by computing two alignments per candidate
and using the better one, where in one alignment the reverse complement sequence
of the candidate is used instead of the forward sequence. In general, those similarity
calculations would require the computation of semi-global alignments to allow for
free shifts to arrange the candidate, and to account for gaps in a sequence, i.e.
insertions or deletions (indels). However, CARE targets reads produced by the
Illumina platform where the dominant types of sequencing errors are mismatches,
not indels [5, 67]. Thus, only an alignment with free shifts is considered that also
only accounts for mismatches. This is implemented as an efficient shifted hamming
distance calculation using bit-wise operations.

The alignment computation returns four values per candidate:

• the alignment orientation (forward or reverse complement)

• the number of overlapping positions

• the number of mismatches in overlapping positions

• an optimal shift value

The shift value indicates by how many positions the candidate read needs to be
shifted to the right relative to the anchor read to obtain the other three values.
Negative shift values correspond to left-shifts. If the shift value s is positive, the first
letter of the candidate will overlap with the s-th letter of the anchor. If the shift
value is negative, the s-th letter of the candidate will overlap with the first letter of
the anchor.

4.3 Algorithm 29

Computation of an filtered candidate set

After alignments have been computed, candidates are filtered by their alignment
results. A perfect filter would only keep candidates which originate from the same
genomic location as the anchor read. Candidates whose alignment contains many
mismatches are discarded, as well as candidates which do not sufficiently overlap
the anchor read. CARE provides two different filter implementations. The used
implementation depends on whether the input dataset should be treated as single-
end or paired-end. In the single-end implementation, candidates are assigned to four
bins depending on the relative number of mismatches per overlapping position of the
alignment, i.e. mismatches

overlapsize . The first bin contains candidates with up to 6% mismatches,
the second bin those with up to 12%, and the third bin allows a mismatch rate of up to
18%. All candidates fit the last bin. Note that a candidate can be assigned to multiple
bins. Next, the bin with the smallest index is computed whose number of assigned
candidates reaches a threshold of 0.6 ·estimated dataset coverage. Candidates which
are not assigned to the selected bin are removed by the filter.

When using the paired-end mode, both reads of a read pair are processed simul-
taneously by the correction algorithm. After finding the two candidate sets and
computing the respective pair-wise alignments with the two anchors, the filter can
utilize the pair information. The two candidate sets are inspected to find candidates
of the same read pair, where one of the reads is a candidate of one anchor, and the
mate of that candidate, i.e. the other read of the pair, is a candidate of the anchor’s
mate. Such pairs of candidates are kept in the candidate sets unconditionally. CARE
assumes that this condition holds true only if the anchor read pair and the candidate
read pair both originate from the same genomic region. Candidates which do not
fulfill this condition are filtered by the ratio between number of mismatches and size
of overlap. Instead of a binned approach, a simple threshold is applied. Candidates
with a ratio greater than tpaired (default: 0.06) are removed.

As an example, assume candidates of both an anchor read a0 and its mate a1

should be filtered. Let the candidate sets of a0 and a1 be C(a0) = {r0, r5, r11} and
C(a1) = {r4, r8, r14}, respectively. Two consecutive reads r2·i, r2·i+1, i ∈ N form a
read pair. Then r4 and r5 always pass the filter, because they originate from the
same read pair. The remaining candidates are kept depending on their alignment
quality to the corresponding anchor read.

30 Chapter 4 CARE: Context-Aware Read Error correction

Construction of an MSA

Let F be the set of candidate reads which passed the alignment filter. Those
candidates are assumed to be similar to the anchor read and can be used in a
majority vote to correct the anchor. To do so, anchor read and filtered candidate
reads are arranged in a multiple-sequence alignment M . This is achieved using
the previously calculated pair-wise sequence alignments in a manner similar to the
STAR algorithms for constructing approximate MSAs, using the anchor read as the
center sequence. Since gap-free alignments are used, the construction of an MSA
is straightforward. Assume that there are n = |F | candidates, and all sequences
involved are of equal length l. The corresponding MSA can be described by a matrix
with n + 1 rows and at most l · 2.4 columns. The upper limit of the number of
columns stems from the minimum required overlap of 30% between anchor and a
candidate.

CARE does not store the full matrix of M since the ordering of rows is irrelevant.
Thus, only the counts of each type of nucleotide (A,C,G,T) as well as their weights
are stored per column, which saves memory. The nucleotide weight at position x of
a candidate is determined by the alignment quality, and the read quality scores. The
weight is a floating point number in the range [0, 1]. The contribution of alignment
quality is the same for each x and is computed from the number of mismatches
per overlapping positions. Longer overlaps with fewer mismatches correspond to
greater weights. The quality score weight for position x is given by 1 minus the
error probability value encoded by the quality score string at position x. The final
nucleotide weight is the product of alignment weight and quality weight. When no
quality scores are used, the quality weight is set to 1.0. For anchors, the alignment
weight is set to 1.0. Given the counts and weights, the following MSA attributes can
be derived for each column: coverage, consensus, and support.

The coverage of a column is the sum of its nucleotide counts. The consensus of a
column is the nucleotide with the greatest weight. The consensus string of M is the
concatenation of every column consensus. The error correction process will try to
replace nucleotides in the anchor by the consensus nucleotide of its corresponding
column in M . The column support is the relative weight of its consensus, i.e.
consensus weight divided by the sum of nucleotide weights.

Additionally, for columns that are occupied by the anchor, counts and weights of the
anchor nucleotides are stored separately. Let x be the nucleotide of the anchor at
a specific position. Then, the so called original coverage is given by the count of x

4.3 Algorithm 31

in the corresponding MSA column. Analogously, the original weight is given by the
weight of nucleotide x in that column.

After M has been constructed, its column contents are inspected to find patterns
which make precise error correction more difficult. This approach is called refine-
ment. MSA refinement is an iterative process which is repeated at most five times.
It aims to remove candidates from F and M which may originate from an inexact
repeat region similar to the region of the anchor. We try to identify those candidates
by searching for columns in M which are occupied by the anchor read and consist
of any non-consensus nucleotide x which contributes at least 30% of the estimated
dataset coverage to the column coverage. Let a be the anchor nucleotide and x as
defined above. If a = x, candidates without nucleotide x in the selected column are
marked for removal. Else, those candidates are marked which do have nucleotide
x in the selected column. Next, alignments of marked candidates are checked.
If there is no marked candidate with an alignment quality weight of at least 0.9,
marked candidates are removed from F and M which completes one refinement
iteration. If, on the other hand, at least one alignment quality weight of a marked
candidate reaches 0.9, no candidate is removed. This results in an early exit of MSA
refinement.

Standard read correction

At this stage of the algorithm to correct anchor read ri, set F contains candidates
which share a hash value with ri, have a good alignment to the anchor, and can thus
be used to produce a reliable correction of the anchor. First, the constructed refined
multiple-sequence alignment M is classified as either high-quality or low-quality
depending on the minimum coverage, average support and minimum support of the
columns in M which are occupied by the anchor. Then, the consensus string of M

is used to provide a corrected anchor sequence. Note that it is possible to obtain a
corrected sequence which is equal to ri. In the case of high-quality M , each position
of the anchor is unconditionally replaced by the corresponding column consensus
nucleotide of M . For low-quality MSAs, however, a more selective replacement
strategy is employed which does only modify positions of high confidence. Positions
with both a column support greater than 0.9 and a nucleotide frequency of at most 2
for the anchor nucleotide are considered as high confidence positions.

In addition to the anchor, a high-quality multiple-sequence alignment can be used
to correct its candidates, as well. The candidates in F align well to the anchor
and are assumed to originate from the same genomic region. Since the quality

32 Chapter 4 CARE: Context-Aware Read Error correction

of M is determined by the contents of anchor columns, its consensus can also
be applied to candidates if they align to the anchor with a shift value of small
magnitude. Specifically, a candidate correction is produced from the MSA consensus
for each candidate which is fully contained in the MSA column range [l − x, r + x],
where l and r are the left-most column and right-most column occupied by the
anchor, respectively, and x = 15 is the default value for candidate correction. The
consensus is used unconditionally for each occupied position of the candidate. The
range is chosen close around the anchor because its columns have the greatest
coverage. Coverage decreases towards the left end and the right end of M . A small
column coverage can make the column consensus less reliable, especially since MSA
refinement is not applied to columns not covered by the anchor. Note that, in total,
there can be multiple corrections of the same read as candidate of different anchors.
The set of all produced candidate corrections of anchor ri is later used to either
confirm or reject the produced anchor correction of ri.

Random Forest-based read correction

CARE implements a second, alternative correction mode that utilizes Random Forests
for corrections. It can be enabled via a program argument. The anchor correction
with high-quality MSAs remains unchanged. For low-quality MSAs, a pre-trained
Random Forest is used. The anchor sequence is compared to the consensus string
to identify mismatching positions. For each of those positions, a set of position-
dependent features is extracted from the MSA which are subsequently classified via
the Random Forest. Given the features, the Random Forest decides whether the
nucleotide at that specific anchor position should be replaced by the consensus of
the corresponding column in the M .

The same approach can be applied to candidate corrections. Instead of using the
consensus unconditionally for a candidate correction as in the standard correction
mode, a pre-trained Random Forest is used to find the positions that should be
replaced by the consensus nucleotide.

Random Forest-based anchor correction and candidate correction require two sepa-
rate forests with separate features. This is because of the different MSA structures.
For anchor corrections, the Random Forest is applied to low-quality MSAs, whereas
in the case of candidate corrections the Random Forest operates on high-quality
MSAs. Detailed information about the random forests is given in Section 4.4.7.

4.3 Algorithm 33

4.3.3 Output phase

After the construction phase is completed, for each input read there exists one
anchor correction and zero or more candidate corrections. Now, a single corrected
read needs to be constructed per input read from the cached anchor corrections and
candidate corrections.

First, the list of all corrections is sorted by read id. The set of all corrections of ri is
then merged to produce a final correction which is written to the output file. The
merge process depends on both the quality of the MSA which generated the anchor
correction, and the number of candidate corrections. If it was a high-quality MSA,
the anchor correction is the final correction. For low-quality MSAs, we consider three
cases which depend on the available candidate corrections. Recall that candidate
corrections are obtained from high-quality MSAs. If there are at least two candidate
correction, they are used to verify the (maybe erroneous) anchor correction. If all
candidate corrections are equal to the anchor correction, it is the final correction,
else it is rejected and read ri remains uncorrected, i.e. unchanged. In the case of at
most one candidate correction, the anchor correction is always selected as the final
result.

4.4 Implementation

There exist two implementations of the CARE algorithm for Linux systems, a purely
CPU-based version written in C++, and a GPU-based version written in CUDA/C++.
Both versions utilize host-side multi-threading to improve the performance. In
addition, the GPU version can offload work to CUDA-enabled GPUs which allows for
highly-parallel execution. In the GPU version, both sequence data and hash tables
can either reside in host memory or device memory.

4.4.1 Data structures

CARE organizes its input data and hash tables in two data structures. Access to
sequence data is managed by a read-storage. A minhasher is used to query the
hash tables. Both data structures are represented by abstract base classes. Derived
classes exist for the CPU version and the GPU version, respectively. A third data
structure, which is used in both versions of CARE, provides temporary storage to
cache corrected sequences.

34 Chapter 4 CARE: Context-Aware Read Error correction

Read-storage

The read-storage uses scatter / gather semantics to access sequence data and quality
scores by read id. Given a number i from 0 to N − 1 where N is the number of reads
in the dataset, the stored data of the i-th read can either be gathered into a target
buffer, or modified by scattering data from a buffer. The concrete implementations
use arrays to store the data. For the GPU read-storage implementation, distributed
arrays are used where the data of a specific read can either reside in host-memory or
in the device-memory of one GPU. All implementations support batch operations.

An input read consists of one or two strings, depending on the input file format. If
the input file is in FASTA format, only the DNA sequence is given per read. If the
input file is in FASTQ format, the DNA sequence is accompanied by a quality score
string of same length. These strings, as well as their lengths, need to be stored in
memory for efficient processing.

In general, DNA sequences are represented as strings over a four-letter alphabet
{A,C,G,T}. Occasionally, the letter N can be observed as well in a small fraction of
sequences. N stands for an ambiguous, undetermined nucleotide, and can be either
A,C,G, or T. In CARE, each occurrence of N is deterministic replaced by either A,C,G
or T. Then, to reduce memory consumption by up to 75%, those DNA sequences
are converted to a two-bit representation, where A = 002, C = 012, G = 102, and
T = 112. Let lmax be the greatest observed sequence length. It is determined in
the construction phase. Then each 2-bit encoded sequence occupies ⌈lmax/16⌉ · 4
bytes in the read-storage (16 2-bit letters per 4 byte integer). Shorter sequences are
padded with zeros to this length but typically all sequences have similar lengths, for
example 100 − 102 bp.

Read lengths are stored in a compact format. For each read, its length is represented
by an offset which needs to be added to the smallest read length observed in the
dataset. Then, the offsets are stored in a contiguous bit array without padding, using
the smallest number of bits per offset required to represent the range of offsets. For
example, assume 4 reads with read length 101, 100, 105, and 102, respectively, and
their corresponding offsets 1, 0, 5, and 2, respectively. Then, ⌈log2(5)⌉ = 3 bits will
be used per offset and the contents of the bit array will be 001′000′101′010. In the
special case that each read is of the same length no offsets are stored.

Quality scores in theory can represent every 8-bit ASCII character. However, de-
pending on the sequencing platform, quality scores usually use only a subset of
ASCII characters. For example, the current Illumina platforms use 94 out of the
256 possible characters (33 "!" to 126 "~"). Yet, this data range does not allow for

4.4 Implementation 35

an easy, efficient lossless bit-wise encoding. Thus, quality scores are commonly
stored without modification. This is the default case for CARE, which means that
quality scores can consume up to 80% of the memory required for the input dataset.
However, a lossy compression of quality scores is possible by the use of quality score
binning [@27]. Given a (short) list of predefined bins and assignment of ASCII
values to bins, individual quality scores of a read are replaced by the score of the
its assigned bin. Then, the binned quality scores can be efficiently represented by a
bit-wise encoding similar to that of sequences. In CARE, the number of quality bins
can be 2,4, or 256, where a value of 256 corresponds to the default, uncompressed
storage format. This means that compressed quality scores occupy one bit, or two
bits, per position, respectively. Compared to the default storage format, this allows
to reduce the memory usage for quality scores by a factor of up to 8. Note that the
use of quality scores can be disabled. In that case, no quality scores are stored and
all reads are assumed to have the same quality.

Minhasher

The minhasher interface provides two methods. First, the query result size can be
determined for a given sequence. Second, a given sequence can be queried against
the hash tables. There exist three minhasher implementations, one for the CPU
version and two for the GPU version. In both GPU implementations, hash values are
computed on the GPU. The implementations can be distinguished by the placement
of hash tables, which can either reside exclusively in host memory, or exclusively in
device memory. All implementations support batch operations.

The hash tables in CARE require a significant amount of memory. Every minhasher
implementation attempts to reduce the memory footprint of hash tables. The
maximum number of values per key is set to 2.5 · c where c is the dataset coverage.
All key-value pairs are removed whose key appears more than 2.5 · c times. This is
motivated by the possible existence of reads originating from inexact repeat regions
in the genome. K-mers of those regions are assumed to occur more frequently.
Similar reads in such a region cannot be reliably corrected because there exist
multiple correction possibilities. Thus, hash values which are assumed to correspond
to those regions are removed. To further reduce their memory footprint, hash tables
are stored in a compact format. All values are stored in a contiguous array. A
compact open-addressing single-value hash table is then used to map the keys to
their corresponding values in the value array.

36 Chapter 4 CARE: Context-Aware Read Error correction

To be able to create this compact layout, all key-value pairs of a table need to be
computed beforehand. Subsequently, they are filtered and arranged in the compact
format. This approach temporarily requires enough memory to store all key-value
pairs of a table, as well as its compact representation. For CPU hash tables, the
initial key-value pairs are first sorted by key. Then the number of values per key
is determined. If it exceeds 2.5 · c, the key and all its values are removed. The
remaining values are then stored into a contiguous array as described previously,
and the single-value hash table of keys is constructed. In the case of GPU hash
tables, key-value pairs are inserted into a device-side multi-value hash table with a
bucket size of (2.5 · c) + 1. The number of unique keys and the corresponding value
counts are determined for all buckets of size less than (2.5 · c) + 1. Those keys and
values are then arranged into the required compact format. Figure 4.3 presents the
workflow for a single hash function with a CPU hash table.

55 53 53 50 55 54 51 54

1 4 0 3 6 2 7 5

Keys (Hashes)

Values (Read ids)

50 51 53 53 54 54 55 55

3 7 4 0 2 5 1 6

Keys

Values

Sort by key

50 51 53 54 55Unique keys

Reduce by key +
Finalization

1 1 2 2 2Num values per key

0 1 2 4 6

3 7 4 0 2 5 1 6

Values begin per key

Values

Generated key-value-
pairs for a single hash

function

Data of a single look-up
table in the minhasher

Single-value
hash table

Fig. 4.3.: Constructing a look-up table from the generated key-value pairs of a single hash
function.

Temporary storage for corrections

Recall that per read there may be one anchor correction and potentially multiple
candidate corrections which need to be stored in the correction phase for access in
the output phase. Corrected sequences are stored in a compressed, binary format.

4.4 Implementation 37

When there are up to 16 modifications made to a read, only the locations of those
modifications and their modified nucleotides are stored instead of the full corrected
sequence. The corrected sequence is then restored on demand by applying the
modifications to the original sequence.

The temporary storage is provided by a contiguous range of virtual memory allocated
with the mmap system call. The range is contiguous to allow for simple access.
However, it is logically split into two sections. The first memory section is backed by
physical memory, i.e. RAM. Its maximum size is specified via program argument.
The last section is represented by a memory-mapped file that is grown on demand.

4.4.2 CPU version

During the construction phase, reads need to be stored in memory, and hash tables
have to be constructed. The first task is achieved by a three-stage pipeline which
uses different sets of threads per stage. The input files are parsed in the first stage by
a single thread. Reads are converted into a 2-bit storage format in the second stage
by four threads. Threads in this stage are also responsible to compress the quality
scores, if required. Finally, the converted reads are inserted into a read-storage by a
single thread. The three stages run concurrently. Queues are used to communicate
between threads of different stages. To parse the sequence file, we implemented a
custom FASTA/FASTQ parser in C++ which is based on the kseq C library1. The
parser supports plain-text files as well as gzip-compressed files.

The second task can be split into two parts, hash table construction and hash table
compaction. During construction, batches of reads are hashed in a parallel for-loop
which iterates over reads. Subsequently, produced key-value pairs are inserted into
hash tables using another parallel for-loop, where each thread is responsible for the
pairs belonging to a specific hash table. The compaction of a hash table is enhanced
using parallel algorithms from the Thrust library targeting the OpenMP back-end.

The correction of reads is an embarrassingly parallel process. Each read (in the single-
end case), or read pair (in the paired-end case), can be corrected independently.
Thus, the correction phase is trivially parallelized over the reads to be corrected
using OpenMP.

Multiple threads are involved in the construction of the output file. One thread
parses the input file. A number of threads decodes the produced anchor corrections
and candidate corrections. Another thread consumes input reads and decoded

1https://github.com/attractivechaos/klib/blob/master/kseq.h

38 Chapter 4 CARE: Context-Aware Read Error correction

corrections, and combines them into a final corrected read. The last thread is
responsible to write the final corrected reads to the output file.

4.4.3 Single-GPU version

There are two key aspects to achieve good performance in a GPU-accelerated pro-
gram. First, data locality is important. If possible, frequently accessed data should
be stored directly in device memory to avoid expensive data-transfers from host
memory via PCIe bus. Second, the GPU should be fully utilized. Often, this requires
latency hiding by overlapping GPU workloads with data-transfers or CPU workloads.
To achieve data locality, reads are placed on the GPU. In the case that not all of the
reads fit into device memory, the excess reads remain in host memory and need to
be accessed via PCIe bus.

The GPU version comes in two flavors which differ in the location of hash tables.
Hash tables can either be located in host memory, or device memory. The hash tables
remain in host memory by default because of their high memory usage. Still, it is
possible to opt-in to use GPU hash tables. This may require a majority of available
device memory on consumer GPUs even for medium-sized datasets. Our GPU hash
tables are based on the GPU hash tables provided by the Warpcore library [32].
During both construction phase and correction phase, hash values of reads are
always computed on the device. In the case of CPU hash tables, hash values are
subsequently copied to the host to access the tables. The following explanations
assume the default case that hash tables are located on the host, not on the device.

During the construction of the read-storage from the input file, the 2-bit encoding
of sequences and the optional encoding of quality scores is performed on the GPU.
For the construction of hash tables, reads remain in host memory since the hash
table compaction is GPU-accelerated using the same Thrust algorithms as in the
CPU version, but using the GPU backend. This may require a large amount of
GPU-accessible memory. If the available device memory is not sufficient, managed
memory is used as a fallback. After construction, the reads are copied to the device.

The correction phase is run almost exclusively on the GPU, with the exception
of host hash table lookups. To overcome performance limitations by slow hash
table operations, a multi-threaded producer-consumer pattern is used. Reads are
processed in batches.

A producer thread gathers the anchor reads of the current batch on the device and
computes their hash values. Hash values are then transferred to the host to query

4.4 Implementation 39

the hash tables. Query results are transferred back to the device. Subsequently,
candidate sequences are fetched from the read-storage. The producer finishes
processing the batch by submitting it into a work queue.

Consumers fetch batches from the work queue and launch the GPU kernels required
for the remaining correction steps, i.e. alignment computation, alignment filtering,
MSA construction, and actual correction. Subsequently, correction results are trans-
ferred to the host where they are saved in the temporary storage for corrections by a
dedicated background thread. By default, up to two consumer threads are used. A
subset of the remaining available threads are used as producers. The actual number
of producers can be determined dynamically at runtime by measuring the elapsed
time of producer workload and the consumer workload for the first few batches,
which are executed by a single thread. It is also possible to manually set the thread
configurations.

When GPU hash tables are used instead of CPU hash tables, reads are also processed
in batches but the described producer-consumer approach is not required since
the CPU-intensive hash table operations are no longer performed. Instead, a few
independent host threads are used to parallelize over the reads, similar to the CPU
version. Each host thread submits batches of reads to the GPU, and uses double-
buffering as explained above. Figure 4.4 visualizes the thread configurations for
both types of hash tables. Note that depending on the available device memory,
the loading of sequences may be a CPU workload if sequences are stored in host
memory.

During the output phase, the corrections are sorted by read id using a device-side
radix sort algorithm with the option to fall back to a CPU-based sort in case of
device-memory shortage. The remaining work is identical to the CPU version.

4.4.4 Batched minhasher queries

In the GPU version, anchor reads are processed in batches for better device utilization.
The process of determining the set of candidate read ids for all anchor reads can
be split into two steps, hash table queries and post-processing. The query step
produces a list of query results per anchor in device memory. A post-processing step
transforms these lists into the sets of candidate read ids in device memory. Figure
4.5 shows the corresponding workflow for a batch of two reads.

At first, the minhash signatures are computed on the GPU. This is achieved using one
thread per hash value. Next, the tables are queried. In the case of GPU hash tables,

40 Chapter 4 CARE: Context-Aware Read Error correction

Load anchor
sequences

Query candidate
ids

Load candidate
sequences

Queue of free
batches

Queue of
ready batches

Correct

Producers

Consumers

Load anchor
sequences

Query candidate
ids

Load candidate
sequences

Correct

Fig. 4.4.: Producer-consumer-pipeline for CPU hash tables (left) and a simple pipeline
for GPU hash tables (right). Blue and green indicate CPU workloads and GPU
workloads, respectively.

warpcore uses a sub-warp of 8 threads per hash value. The final candidate read ids
are given by the set of distinct values in the result list. To obtain it, each segment
is sorted. Subsequently, only the first occurrence of each run of equal elements is
kept.

Result lists with more than 2048 elements (large segments) are sorted in global
memory using CUB’s DeviceSegmentedSort function, and are compacted with a
custom kernel with one thread block per segment. Result lists with at most 2048
elements (small segments) are processed with a custom kernel that fuses sorting and
compaction, using one thread block of size 128 per segment. For those segments, all
elements fit into the registers of a thread block which allows to perform an efficient
block-wide radix sort with CUB’s BlockRadixSort. The sorted lists do not need to
be materialized in global memory. The compaction step can operate directly on the
registers which reduces the number of global memory accesses compared to the large
segments. To further improve the performance, we partition the small segments
by the number elements and use specialized versions of the kernel for different
segment sizes. Specifically, we use 5 different kernels for maximum segment sizes of
128, 256, 512, 1024, and 2048, where each thread is assigned 1, 2, 4, 8, or 16 elements

4.4 Implementation 41

4 13 18 13 5 8

0 1 2 0 1 2 0 3 4 3 6 72

0 0 1 1 2 2 0 3 3 4 6 72

0 1 2 0 3 4 6 7

AACG CACTReads

Minhash
signatures

Query
results

Sorted query
results

Candidate
read ids

Query

Segmented
sort

Segmented
unique

Hash

Fig. 4.5.: Finding candidate read ids for a batch of two reads. Three hash functions are
used. Different colors indicate results of different hash functions.

of input, respectively. However, segment sizes for both small and large segments can
still vary significantly which can lead to load-balancing issues.

4.4.5 Bit-parallel hamming distance

The computation of the hamming distance for different shift values is an important
building block of CARE. A single hamming distance computation between two strings
from a four-letter alphabet can be performed in bit-parallel fashion.

Recall that sequences in CARE are stored in a 2-bit format with A = 002, C = 012,
G = 102, and T = 112. To compute the hamming distance between 2-bit encoded
sequences S1 and S2, a bit mask is computed that indicates mismatching characters.
This is achieved by first splitting the two corresponding bit strings into two bit strings
each, containing all even bits (S1e, S2e) and all odd bits (S1o, S2o), respectively. Next,
the bit string M = (S1e ⊕ S2e) ∨ (S1o ⊕ S2o) is computed. M is a mismatch mask
where the bit at position i is 1 if the characters of S1 and S2 at position i are different
from each other. Otherwise, the bit is 0. Thus, the hamming distance is given by
the number of bits set to 1 in M , also known as the population count. It can be

42 Chapter 4 CARE: Context-Aware Read Error correction

computed efficiently via intrinsics on capable hardware such as modern CPUs and
GPUs. The computation of M for two example sequences is shown in Figure 4.6.

S1: TTCAG

1111010010

11001 11100

S2: TACAT

1100010011

10001 10101

01000 01001

01001

2-bit encoded
sequences

Odd & even bits

XOR

OR

Mismatch mask

XOR

Fig. 4.6.: Bit-parallel hamming distance computation. Mismatching characters are high-
lighted red.

The initial conversion of the bit-strings is expensive. For a single hamming distance
calculation, there is no performance benefit. However, this approach is suitable
for CARE since multiple hamming distance calculations are performed per pair of
sequences. The converted bit-strings can be reused for multiple shift values.

In the GPU implementation, one pair of sequences is processed per GPU thread. We
avoid frequent accesses to slow global memory by loading the sequences once into
shared memory. To reduce shared memory bank conflicts, the sequences are stored
in block-transposed layout, i.e. the i-th sequence element of thread t is stored in
shared memory at address i · threadsPerBlock + t such that consecutive threads in
the same block access consecutive memory locations.

4.4.6 MSA construction

Multiple-sequence-alignments are constructed from the anchors, their candidate
sequences, and their pair-wise alignment results. Optionally, quality scores can be
considered as well. The output consists of multiple arrays describing the column
contents of the MSA, such as per-column nucleotide frequency and nucleotide weight.

4.4 Implementation 43

For the parallel construction of many MSAs on the GPU, we use one thread block
with 128 threads per anchor. Since CARE targets short NGS reads, both the four
frequency arrays and the four weight arrays fit into shared memory. For example,
with sequences of maximum length 128 around 14 kilobyte of shared memory are
required. Thus, our MSAs are created in shared memory and are only written back
to global memory after the construction is complete.

For the actual population of the arrays, we had initially partitioned the thread block
into multiple smaller thread groups, for example size 8, which each processed one
candidate sequence and added the counts and weights using atomic operations. The
reasoning behind that approach was that 2-bit compressed sequences are stored
in few 32-bit integers (8 for sequences of length 128), which could be assigned to
individual threads. However, this led to atomic contention for columns of high
coverage, and caused non-deterministic results because floating point math (for the
summation of weights) is not associative. For example, this caused problems during
the MSA refinement process, where, despite the removal of all candidates covering a
specific column, the sum of weights for that column could end up with a non-zero
value.

These problems were resolved by using the simple approach of processing can-
didates one after another, using one thread per nucleotide. While this requires
a block-wide synchronization after each candidate to avoid race-conditions, the
performance improved compared to the atomic approach and floating point issues
were eliminated.

4.4.7 Random Forest

Random Forests in CARE perform the binary classification task of deciding whether
or not a specific position in a read should be replaced by the consensus. Given the
features of a single position extracted from the MSA, each decision tree in the forest
produces a confidence value between 0.0 and 1.0. Error correction is performed if
the sum of confidence values in the forest exceeds a threshold. As a performance
optimization, classification finishes as soon as the threshold is reached, without
evaluating every decision tree, if possible.

A feature for Random Forest-based error correction is a floating point number which
is derived from the MSA. Table 4.1 lists all features used by CARE. The anchor
correction is performed using features 2-14. Candidate correction uses features
1-14.

44 Chapter 4 CARE: Context-Aware Read Error correction

1 relative overlap between anchor and candidate
2 average support of anchor columns
3 minimum support of anchor columns
4 minimum coverage of anchor columns / c
5 maximum coverage of anchor columns / c
6 count of o / coverage
7 weight of o / full column weight
8 weight of o / count of of o
9 count of x / coverage

10 weight of x / count of x
11 support
12 coverage / c
13 full column weight / c
14 full column weight / coverage

Tab. 4.1.: Features extracted from an MSA. c is the estimated dataset coverage. x is the
consensus nucleotide. o is the original nucleotide of the sequence to be corrected
(anchor or candidate). Features 6-14 describe only the currently inspected
column, whereas features 1-5 are properties that cover multiple columns and are
constant for all positions of the same anchor or the same candidate, respectively.

The Random Forests for CARE are trained offline with the scikit-learn python package
[59]. For this purpose, the CPU version of CARE comes with the option to extract
features from its computed MSAs and to store them to file. The features are
then labeled using a ground-truth dataset and are subsequently fed to the training
script.

CARE uses a custom implementation and serialization of Random Forests providing
a simple integration into the existing code for both the CPU version and the GPU
version. Random Forests are loaded from file. Each decision tree is represented
as a set of nodes which are stored contiguously in an array. Each node stores the
feature number and the corresponding split value. If a node’s child is not a leaf, the
array index of the child node is stored, as well. If it is a leaf, its confidence value
is stored instead. The ordering of nodes within the array is given by the pre-order
DFS traversal of the tree. While this choice comes with a sub-optimal performance
caused by irregular memory accesses during classification, it is simple to implement
and simple to use. Faster, more complex representations exist. For example, [70]
suggests a hierarchical partitioning into sub-trees where the nodes of each sub-tree
are stored contiguously.

4.4 Implementation 45

4.4.8 Multi-GPU version

CARE is able to utilize multiple GPUs. This comes with two advantages that reduce
the runtime compared to using a single GPU.

First, batches of reads can be processed in parallel on multiple GPUs. This is achieved
by splitting a batch into n equal-sized parts where n is the number of GPUs. A single
CPU thread is used to submit work to all GPUs in round-robin fashion.

Second, using multiple GPUs extends the available GPU memory, allowing to store
more sequence data in device memory instead of host memory. Additionally, more
hash tables fit into GPU memory when GPU hash tables are enabled. There are
different methods to utilize the extended memory. In the most simple case, all read
data and device-side hash tables fit into the memory of a single GPU. Then, the
data can be replicated on each GPU, allowing for direct efficient access without
additional communication overhead between GPUs. In the case that read data
and/or hash tables exceed the available memory of a single GPU, reads and/or tables
are distributed amongst multiple GPUs using an even-share distribution. This adds
additional inter-GPU communication steps when accessing hash tables or reads. For
minhasher access, all input sequences are broadcast to each GPU, and the per-GPU
query results are sent back to the respective devices where they are merged into a
contiguous array. Gathering reads from the read-storage via an index list requires
a multi-split operation to determine the corresponding indices per GPU, followed
by an all-to-all communication to distribute those index lists. Figure 4.7 gives an
example of multiple GPUs gathering data from a distributed array.

46 Chapter 4 CARE: Context-Aware Read Error correction

A B C D E F G H I J K L M N O P

0 8 16

6 8 1 13 11 8 14 13 0 12

Distributed array:

GPU 0 GPU 1

Gather indices:

6 1 8 13 11 8 0 12 13 14

6 1 0 8 13 11 8 12 13 14

G B A I N L I M N O

G I B N L I O N A MGather result:

All-to-all

Multi-split

Gather

All-to-all

Fig. 4.7.: An array with 16 elements is evenly distributed between two GPUs. The array is
collectively accessed by each GPU via index list. Indices per GPU are identified
via (non-stable) multi-split and exchanged. Locally gathered data is sent back
to the respective GPUs. The second all-to-all operation includes a reordering of
gathered data to match the order of input indices.

4.4 Implementation 47

Evaluation of CARE 5
In this chapter we investigate CARE’s ability to detect and correct sequencing errors
in FASTQ files. Simulated datasets provide a simple way to analyze the output of
different algorithms since the exact numbers and locations of sequencing errors
are available, as well as the exact location of reads within a reference genome. In
contrast, the erroneous nucleotides and read locations are generally unknown for
real-world datasets. Still, evaluation of real-world data is important to investigate
whether positive observations in simulated datasets lead to positive observations
in real datasets. This may not be the case if simulated datasets do not accurately
model error distributions of the target sequencing platforms. CARE was developed
targeting reads from the Illumina HiSeq platform.

For simulated datasets with known erroneous positions it is easy to compute per-
nucleotide statistics (true positives, false positives, true negatives, and false nega-
tives) by a three-way comparison of the input dataset I, an error-free version of the
input dataset E, and the corrected dataset C. This way, it is possible to classify each
nucleotide of the correction output as either true positive (TP), false positive (FP),
false negative (FN), or true negative (TN). Let Ii, Ei, and Ci be the i-th nucleotide
of files I, E, and C, respectively. Then, the following definitions of, TP, FP, FN, and
TN, are used.

• TP: Ii ̸= Ei and Ei = Ci

• FP: Ii = Ei and Ei ̸= Ci

• FN: Ii ̸= Ei and Ei ̸= Ci

• TN: Ii = Ei and Ei = Ci

For this evaluation, the ART read simulator [23] was used. In addition to simulated
reads, ART generates a SAM alignment file for error-free versions of the simulated
reads. This alignment file can be used to extract the error-free reads as well as the
read locations within the given reference genome.

The evaluation on real-world data is more challenging since error-free versions
of the data are typically not available. Instead of per-nucleotide checks, k-mer
analysis and de-novo assembly are performed for real-world datasets. Our k-mer

49

analysis gives information about how well the data in the corrected data matches a
reference genome by comparing the k-mers of a dataset to those of the respective
genome. In de-novo assembly, a new genome is assembled from the corrected data
and compared the a reference genome.

The evaluation results of CARE are compared to the state-of-the-art tools Musket v1.1,
SGA v0.10.15, Karect (Github commit from 16th March 2015), Bcool (Github commit
from 29th November 2018), Lighter v1.1.2, and BFC r181. All tools, including CARE,
come with multiple program settings that affect the results, and usually there is no
perfect setting that always produces the best possible result for all datasets. Default
settings or recommended settings are used for the other tools. For CARE, fixed
settings are used during comparison with other tools. However, we also give an
overview how different settings impact the results of CARE. This is done by selecting
a subset of options that are varied independently.

In the remainder of this chapter, datasets are introduced which are used for eval-
uation and it is explained how Random Forests are trained for use with CARE.
Then, the results are presented starting with the evaluation of different program
settings, followed by the comparison of results to other tools on simulated data
and real-world data. A detailed runtime analysis is given in chapter 6. It compares
the runtime between all tools on a large dataset with 900M reads, and performs a
detailed comparison of the parallelization strategies employed by CARE.

5.1 Datasets

Both simulated datasets and real-world datasets were used, which are presented in
Tables 5.1 and 5.2. There are four different collections of simulated datasets (A-D),
and a collection of real datasets (R). All used datasets come from four different
reference genomes: Drosophila melanogaster (D.melanogaster), Caenorhabditis
elegans (C.elegans), full Human, and only Human Chromosome 14. Collections
A and B were generated using ART’s built-in HiSeq 2000 sequencing profile. This
produces paired-end reads with an error-rate of approximately one percent and
a read length of 100. Collections C and D use the MiSeqV3 profile that generates
paired-end reads of length 250 with approximately two percent error-rate. Datasets
in collection A and C (B and D) have a coverage of 30x (60x). Datasets R1 and R2
are available from the Short Read Archive using the accession numbers SRR543736

50 Chapter 5 Evaluation of CARE

and SRR988075, respectively. Dataset R3 comes from the Genome Assembly Gold-
standard Evaluations (GAGE)1.

Number Organism Reads (A) Reads (B) Reads (C) Reads (D)
1 C.elegans 30.1M 60.2M 12.0M 24.1M
2 D.melanogaster 36.0M 72.1M 14.4M 28.9M
3 Hum. Chr. 14 26.5M 53.0M 10.6M 21.2M
4 Human 914.7M - - -

Tab. 5.1.: Simulated datasets of collections A-D with their respective number of reads.
Dataset number 4 is only available in collection A.

Number Organism Coverage Reads
1 C.elegans 58x 57.7M
2 D.melanogaster 64x 75.9M
3 Hum. Chr. 14 35x 36.5M

Tab. 5.2.: Collection R of real-world HiSeq datasets.

5.2 Training of Random Forests

Multiple Random Forests were trained using simulated HiSeq datasets with 30x
coverage from different organisms, namely C.elegans, D.melanogaster, Mus musculus
Chr. 15, Human (Chr. 14 and Chr. 15), and A.thaliana. First, the CPU version of
CARE was used to extract the features for each dataset for anchor correction and
candidate correction, respectively. Features were subsequently labeled by comparing
the consensus nucleotide to the corresponding position in the error-free version
of the read. If they are equal, the feature is labeled true, meaning the consensus
nucleotide is correct and should thus replace the original nucleotide in the erroneous
read. Else, the feature is labeled false.

Five Random Forests with 128 trees were then trained for both anchor correction and
candidate correction, respectively. To reduce the chance overfitting in the evaluation,
the forests were trained following a leave-one-out approach. For each forest, features
from a different organism were excluded from the training. Evaluation on the
datasets was then performed using the Random Forest which did not include training
data from the organism whose reads should be corrected. The resulting decision
trees have an average depth of around 51 and 56 for anchor correction and candidate
correction, respectively.

1https://gage.cbcb.umd.edu/data/index.html

5.2 Training of Random Forests 51

https://gage.cbcb.umd.edu/data/index.html

5.3 Variation of program settings

CARE has many program parameters which can affect correction quality. This section
aims to highlight the impact of a limited number of parameters on dataset A3. The
following parameters are used as a baseline, which are then modified individually.

Quality scores Enabled, 8-bit

Kmer size 20
Hash functions 48

Paired-end mode yes, t_paired = 0.06
Candidate corrections Enabled

Random Forest disabled

With the baseline settings, CARE achieves the following correction statistics.

TP 23, 558, 011
FP 10, 646
FN 2, 093, 616
TN 2, 622, 999, 127

Figure 5.1 shows TP and FP depending on k-mer size, number of hash functions,
quality score configuration, and pair-mode. Those parameters influence the con-
structed MSAs by altering the set of candidate reads and their weights within the
MSA. Kmer size varies from 10 to 32. The number of hash functions varies from 1
to 48. The threshold for pair-mode increases between 0.01 and 0.20 in steps of 0.01.
Note that the results are unaffected from this threshold if the input file is treated as
single-end (SE) instead of paired-end (PE).

The smaller the k-mer size the more likely it is to find a specific k-mer in a read. The
average number of assigned reads per hash value increases. During the hash table
compaction step, more keys i.e. hash values will be removed because the bucket size
is exceeded more often. Both observations alter the initial set of candidate reads.
Reads of the same genomic region as the anchor may no longer be a candidate,
because the frequent k-mers have been removed. Additionally, the set of candidates
may be larger, because more reads share a k-mer. This increases the runtime since
more pair-wise alignments need to be computed. On the other hand, increasing
the k-mer size will decrease the candidate set size. The probability that two reads
share a large k-mer decreases. Additionally, a single sequencing error will produce k

erroneous k-mers, which may not be found in the dataset. With a k-mer size of 16

52 Chapter 5 Evaluation of CARE

10 15 20 25 30
Kmer size

0.5

1.0

1.5

2.0
TP

1e7

TP
FP

0 20 40
Hash tables

1.0

1.5

2.0

TP

1e7

None 1-bit 2-bit 8-bit
Quality scores

2.30

2.32

2.34

TP

1e7

0.05 0.10 0.15 0.20
t_paired

1.9

2.0

2.1

2.2

2.3

TP

1e7

PE TP
SE TP
PE FP
SE FP

2000

4000

6000

8000

10000

FP

4000

6000

8000

10000

FP

10400

10450

10500

10550

10600

10650

FP

0

2500

5000

7500

10000

12500

FP

Fig. 5.1.: Variation of correction parameters.

or less it is possible to reduce the memory usage of hash tables because the k-mers
and their hash values can be represented by 32-bit integers, whereas larger k-mers
require the use of 64-bit integers instead.

When an erroneous k-mer produces a minimal hash value, i.e. its hash value
contributes to the read signature S, it is less likely to find reads from the same
genomic region with that same hash value for the same hash function. Thus, a larger
number of hash functions has two benefits. First, it increases the probability to use
non-erroneous k-mers in the signature. Second, when more hash functions are used,
the corresponding k-mers of the signature in general cover more positions of the
read. This increases the chance to find candidate reads which cover different parts
of a read. Since different candidates may overlap different positions of a read, it
is important to have each position of an anchor read covered by a candidate to be
able to construct a high quality MSA. The drawback of using many hash functions
is the high memory usage which scales linearly with the hash functions / hash

5.3 Variation of program settings 53

tables. Additionally, runtime increases because more tables need to be accessed, and
candidate sets are typically larger.

Quality scores correspond to the probability that a specific nucleotide is called
correctly by the sequencing machine. Recall that the consensus of an MSA column
is determined by the nucleotide weights. The use of quality scores improves the
accuracy of the MSA consensus since positions of low quality contribute less weight.
This is true for even the simplest approach of one 1 bit positions which classifies
a nucleotide as either "good" or "bad". With a higher resolution for quality scores,
fine-grained weight contributions are possible. The usage of quality scores is always
recommended if memory permits.

In single-end mode, CARE achieves 23, 380, 267 TP and 13, 589 FP. Recall that in
paired-end mode, candidate pairs which span across anchor pairs are always kept
in the candidate set during alignment filtering. Candidates for which no such pair
exists are only kept if the relative number of mismatches in the alignment overlap
does not exceed t_paired. The smaller t_paired, the better the accepted alignments.
However, at the same time, the number of accepted alignments decreases. This
can lead to MSAs with low coverage that may in turn be unable to correct an error.
With its default setting of 0.06, CARE achieves both a better number of TP and FP in
paired-end mode compared to the single-end mode.

Next, we take a look at candidate correction and random forest usage. Instead
of directly affecting the MSAs, these options change the way how the constructed
multiple-sequence alignments are used to obtain the final corrected read. There are
two different types of anchor corrections. Those constructed from a high-quality
(HQ) MSA, and those coming from a low-quality (LQ) MSA. As described in Section
4.3.3, high-quality corrections are always accepted as final correction, whereas low-
quality corrections may be either accepted or rejected depending on the presence
of candidate corrections. The impact of candidate corrections is two-fold. Wrong
low-quality corrections can be avoided which reduces the number of false-positives.
At the same time, however, valid corrections could be rejected because of the lack
of supporting candidate corrections. This manifests as a reduction of true-positives.
Random forests allow for a more precise correction of low-quality anchors, and
candidates, which improves correction quality in terms of both TP and FP.

Figure 5.2 and Figure 5.3 show the contributions to TPs and FPs, respectively, of the
three different correction types in different settings. The three types are HQ anchor
correction, LQ anchor correction with supporting candidates (LQ+good cands), and
LQ anchor correction without supporting candidates (LQ+bad cands). One can
clearly see that low-quality corrections without candidate support are responsible for

54 Chapter 5 Evaluation of CARE

the majority of wrong nucleotide corrections. Note that the displayed contribution
of high quality anchors is the same across all selected settings since they are not
affected by either Random Forest corrections or candidate corrections.

Fig. 5.2.: TP depending on random forest usage and candidate correction.

Fig. 5.3.: FP depending on random forest usage and candidate correction.

5.4 Evaluation on simulated HiSeq datasets

CARE was run with the following settings. All remaining tools were run with their
recommended settings or default settings.

5.4 Evaluation on simulated HiSeq datasets 55

CARE settings Dataset A(B)1-3 Dataset A4

Quality scores Enabled, 8-bit Enabled, 2-bit

Kmer size 20
Hash functions 48

Paired-end mode yes, t_paired = 0.06
Candidate corrections Enabled

Random Forest Enabled, 128 trees, thresholds 93; 15

Because of memory constraints, full 8-bit quality score could not be used for dataset
A4. Instead, quality scores were stored in the compressed 2-bit format.

For all datasets the nucleotide statistics per tool were determined as well as the
derived metrics sensitivity, specificity, precision, and false positives per million
corrections. Derived metrics are defined as follows:

• sensitivity = T P
T P +F N

• specificity = T N
T N+F P

• precision = T P
T P +F P

• false positive rate (FPR) = 1, 000, 000 · F P
T P +F P

The false positive rate is better suited to highlight differences in false positive
corrections than the other derived metrics. This is because in general the absolute
numbers of true positives and true negatives are multiple orders-of-magnitude
greater than those of false positives. Thus, even large changes in false positive
numbers may not accurately be accounted for by specificity and precision.

Figure 5.4 shows the average ratio of TP and FP per tool over CARE+RF. This is
computed as T PT OOL

T PCARE+RF
and F PT OOL

F PCARE+RF
, averaged over all datasets per collection.

All tools achieve similar TPs. In contrast, the number of false-positive corrections
varies significantly per tool. CARE produces up to two orders-of-magnitude fewer
false positive corrections than those of the competitors which makes it superior. For
dataset collection B with 60x coverage, CARE with enabled random forest produces
less TP on average than without forests. This could be because the forests have been
trained with a different coverage. However, while the training data may contribute
to this observation, the root cause may be different since in terms of FPs the distance
to other tools decreases. Still, CARE produces the most accurate corrections. Tables
with detailed results can be found in the appendix, Section A.1.

56 Chapter 5 Evaluation of CARE

Collection A Collection B
0.92

0.94

0.96

0.98

1.00

1.02

Av
er

ag
e

TP
 ra

tio
 o

ve
r C

AR
E+

RF

CARE
CARE+RF
Musket
SGA
BFC
Bcool
Lighter
Karect

Collection A Collection B
0

10

20

30

40

50

60

70

80

Av
er

ag
e

FP
 ra

tio
 o

ve
r C

AR
E+

RF

Fig. 5.4.: Average TP ratio and FP ratio over CARE RF on simulated HiSeq data. Greater
numbers are better for TP. Smaller numbers are better for FP.

5.5 Evaluation on simulated MiSeq datasets

All tools, including CARE, were not specifically designed for MiSeq data. It differs
from HiSeq data in both read length and error rate. Above evaluation was repeated
on dataset collections C and D to see how the error correctors can handle such data.
As before we computed the average ratios, which are shown in Figure 5.5.

Generally, the field lies closer together in terms of FP compared to the HiSeq case
with the exception of Musket which struggles with the different type of data. CARE
produces at least 7 times less FP on average compared to other tools. For TPs there
is a greater variation of rations. Similar to HiSeq correction, using the random forest
produces less TP than without random forest with a dataset coverage of 60x.

5.5 Evaluation on simulated MiSeq datasets 57

Collection C Collection D

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Av
er

ag
e

TP
 ra

tio
 o

ve
r C

AR
E+

RF

CARE
CARE+RF
Musket
SGA
BFC
Bcool
Lighter
Karect

Collection C Collection D

0

20

40

60

80

100

120

140

Av
er

ag
e

FP
 ra

tio
 o

ve
r C

AR
E+

RF

Fig. 5.5.: Average TP ratio and FP ratio over CARE RF on simulated MiSeq data. Greater
numbers are better for TP. Smaller numbers are better for FP.

5.6 Evaluation on real-world datasets

This section focuses on the applicability of error correction on real-world data.
In contrast to simulated datasets, the location of sequencing errors in real-world
datasets is generally unknown which prohibits the calculation of per-nucleotide
statistics. Instead, dataset analysis is performed on both uncorrected datasets and
their corresponding corrected datasets to see if the corrected dataset produces better
results. The real-world evaluation focuses on two common use-cases: k-mer analysis
and de-novo assembly.

5.6.1 K-mer evaluation

The impact of wrong corrections on the k-mers is two-fold. On one hand, a valid
k-mer could be changed into one which does not appear in the reference genome.
On the other hand, k-mers of reads spanning low-coverage regions could be altered
into more frequent ones. While this does not introduce wrong k-mers, correct
information is lost. To quantify false-positive corrections on real-world datasets

58 Chapter 5 Evaluation of CARE

where the location of errors is generally unknown, k-mer spectra produced by
Jellyfish v2.3.0 [53] were inspected for uncorrected reads, corrected reads, and the
corresponding reference genome. A k-mer is called true k-mer if it occurs in the
reference genome. During error correction true k-mers which are present in the
uncorrected reads should not be altered to keep the correct genome information.
k-mers which are present in both the uncorrected reads and the genome, but
are missing from the corrected reads are called lost true k-mers. A perfect error
correction algorithm should not introduce lost true k-mers.

We computed the number of low-coverage (≤ 10 coverage) lost true 21-mers of
datasets R1,R2 and R3. Low-coverage k-mers can be easily lost during error correc-
tion because there is not much supporting information. Table 5.3 shows the results
for CARE, and for the three best competitors, on dataset R1. Full results for R1, R2,
and R3, are available in the appendix Section A.2. The results show that datasets
corrected by CARE have the fewest numbers of removed low-coverage true 21-mers.
This indicates accurate corrections with rare false-positives.

Coverage CARE CARE+RF BFC SGA BCOOL
1 3,700 2,888 11,496 5,567 6,675
2 328 247 4,710 1,309 3,045
3 73 39 2,928 135 1,902
4 59 9 845 25 1,449
5 14 2 172 3 1,368
6 10 1 41 3 1,387
7 21 0 29 0 1,237
8 4 0 4 2 1,307
9 11 0 1 0 1,447
10 21 0 1 0 1,686
Sum 4,241 3,186 20,227 7,044 21,503

Tab. 5.3.: Lost 21-mers for dataset R1.

5.6.2 De-novo assembly evaluation

In de-novo assembly, a collection of reads is used to reconstruct the genome of the
individual whose cell samples were sequenced to obtain the reads. This is achieved
by identifying overlapping reads and joining them into longer sequences, so called
contigs. Ideally, the assembly process produces only long, error-free contigs which
accurately represent portions of the original genome. Subsequently, the contigs
will be arranged into longer scaffolds. The presence of sequencing errors and
false-positive corrections can reduce the assembly quality of contigs. For example,

5.6 Evaluation on real-world datasets 59

sequencing errors can lead to dead ends when no similar overlapping read can be
found to elongate the contig. This results in a more fragmented assembly, i.e. shorter
contigs. Conversely, unrelated reads could be joined in a contig because sequencing
errors make them appear similar.

Assembly was performed with SPAdes v3.13.1 [4]. The integrated error correction
step of SPAdes was disabled. Assembled contigs were analysed using QUAST v5.0.2
[18].

The evaluated metrics are: the number of contigs longer than 50, 000 basepairs, the
accumulated length of those contigs, the total number of contigs, the N50 score and
NG50 score, and the number of misassembled contigs. The N50 value is defined as
follows:

"The N50 of an assembly is a weighted median of the lengths of the sequences it
contains, equal to the length of the longest sequence s, such that the sum of the
lengths of sequences greater than or equal in length to s is greater than or equal to
half the length of the genome being assembled. As the length of the genome being
assembled is generally unknown, the normal approximation is to use the total length
of all of the sequences in an assembly as a proxy for the denominator." [14]

The NG50 differs from the N50 value in that the actual size of a reference genome is
used instead of the total length of the assembly.

Table 5.4, shows an excerpt of the analyses for datasets R3 for CARE and the three
best competitors. Appendix tables A.8, A.9, and A.10 show excerpts of the analyses
for datasets R1, R2, and R3, for all tools.

On dataset R1, only SGA and CARE are able to increase the N50 value compared
to the assembly generated from the original unprocessed data. CARE achieves the
fewest misassembled contigs. Assembly results for R2 improve when corrected with
either BCOOL and CARE. BCOOL produces the fewest and longest contigs. All tools
are able to produce better results for R3. Contigs generated after correction with
CARE are the longest. Their numbers are the fewest.

R3 Uncorrected CARE CARE+RF BFC Musket Karect
contigs ≥ 50k 3 51 63 57 52 53
contigs 18,340 10,941 10,635 10,697 11,211 10,820
misassembled 135 611 554 603 734 577
N50 7,859 14,196 14,749 14,673 13,742 14,436
NG50 5,506 10,251 10,624 10,470 9,886 10,263

Tab. 5.4.: Selected assembly results for dataset R3.

60 Chapter 5 Evaluation of CARE

Performance of CARE 6
In this chapter, we take a closer look on the parallelization of CARE. The program
comes with different strategies to leverage the capabilities of modern hardware
to achieve good performance. On one hand, multi-threading targets multi-core
CPUs. The more interesting topic is the performance on many-core GPUs. As
will be seen, the GPU version of CARE greatly outperforms the purely CPU-based
implementation, but comes with its own challenges to achieve high performance.
Aside from the performance of the different modes, this chapter also includes
a performance comparison between different error correction tools on the large
Human dataset (A4).

The following systems were used for our performance benchmarks:

M1 (Single-GPU workstation): AMD Ryzen Threadripper 3990X 64-core CPU, 256
GB DDR4 RAM, NVIDIA A100 PCIe GPU with 80 GB HBM2e memory, CUDA
Toolkit 11.6

M2 (Multi-GPU server): Dual-socket AMD EPYC 7713P 64-core CPU, 2,048 GB
DDR4 RAM, 8 fully-connected A100 SXM4 GPUs with 80 GB HBM2e memory,
CUDA Toolkit 12.1

We begin with benchmarks for dataset A1 (C.elegans, 30.1M reads, Length 100,
HiSeq) on system M1. Unless mentioned otherwise, the following settings were
used. The batchsize for the GPU version was set to 4096.

Quality scores Enabled, 8-bit

Kmer size 20
Hash functions 48

Paired-end mode yes, t_paired = 0.06
Candidate corrections Enabled

Random Forest Disabled

61

6.1 Construction phase

The construction of the readstorage involves parsing the input files to obtain the
raw sequences and quality scores, and converting the sequences into the 2-bit
representation. Optionally, quality scores are encoded, as well. First, we take a
look at the maximum achievable performance of our custom file parser in isolation.
The performance depends on the file type (FASTA, FASTQ, compressed (.gz) or
plain-text) and on the storage type (HDD, SSD, RAM). For this experiment, we
converted dataset A1 to all four different file types and measured the required time
to count the number of reads in the file. The results are presented in Table 6.1.

File type fasta fasta.gz fastq fastq.gz
File size 3.6 GB 0.98 GB 6.5 GB 2.8 GB
RAM 1.07 11.52 1.84 30.68
SSD (PCIe) 1.59 11.89 2.70 31.56
HDD 7.03 12.04 12.64 31.94

Tab. 6.1.: Runtime in seconds to count the number of reads per file.

Most of the runtime for compressed files is spent decompressing the data. As
expected, the decompression of a gzip file is several times slower than the processing
of the plain-text counterpart. Since most of the time is spent on decompression,
faster storage access has negligible impact in this case.

Recall that a multi-threaded three-stage pipeline is employed to construct a read-
storage. Multiple threads are used to encode sequences into 2-bit format. Figure 6.2
shows the total pipeline runtime depending on the number of threads utilized for
encoding.

Threads fasta fasta.gz fastq fastq.gz
1 18.85 18.86 18.94 34.7
2 9.49 15.61 9.55 34.68
4 5.16 15.53 6.68 34.41
8 5.13 15.54 6.79 34.35

Tab. 6.2.: Scaling of readstorage construction with the number of encoder-threads. Runtime
is given in seconds. The input file is already cached in RAM.

Sequence encoding scales up to 4 threads for plain-text inputs. Additional threads
cannot be utilized because file parsing becomes the limiting bottleneck. Note that the
full pipeline introduces additional overheads such as data copies and communication
compared to stand-alone file parsing. Similar to the previous experiment, the most
compute-intensive part of processing compressed inputs is decompression. In this
case, sequence encoding takes only a small fraction of the total runtime.

62 Chapter 6 Performance of CARE

Next, we take a look at minhasher construction. The generation of key-value
pairs from reads are trivially parallelizable. On the other hand, the compaction step
involves more elaborate algorithms such as sorting and stream compaction which are
not trivially parallelizable and which have a data-dependent performance. Figure 6.1
shows the speed-up of a parallelized minhasher construction over the single-threaded
CPU version. The single-threaded CPU runtime is 276s. Host-side multi-threading in
the GPU version only has limited impact as most of the computations are performed
on the GPU instead of the CPU. The benefit of using more than a single thread in the
GPU version with CPU tables is overlapping compaction and key-processing. The
compaction of the key-value pairs of the next table can be performed in a different
thread at the same time as compacted keys of the current table are inserted into
the single-value hash table. The construction of GPU-accelerated hash tables is the
fastest.

Fig. 6.1.: Speed-up of hash table construction.

6.2 Correction phase

Recall that the correction phase comprises of multiple steps. Figure 6.2 shows the
relative time spent on these steps for the CPU version and the GPU version with
host-sided hash tables, and device-sided hash tables, respectively. One can easily
see that hash table accesses in host memory severely limit the performance of the
GPU version. This major contribution to runtime explains the need for additional
multi-threading to parallelize those hash table queries.

Out of the total execution time of around 6050s for the single-threaded CPU version,
5735s (95%) are spent in the correction phase. Since reads can be processed inde-
pendently, this phase can be easily parallelized on the CPU with multi-threading.

6.2 Correction phase 63

Fig. 6.2.: Relative time spent in the different steps during correction phase.

For the GPU version, however, multiple parallelization schemes exists. Similar to
the CPU version, the simplest approach of the GPU version (GPU simple) is to use a
host-side parallel for-loop over the reads where each thread executes all steps for
the reads of its current batch on the device. This approach is applicable for both
types of hash tables. To tackle the high workload of CPU hash tables in the GPU
version, a producer-consumer pipeline can be used instead of the simple approach
for more efficient resource utilization. Its performance depends on the numbers of
producers and consumers. For the presented benchmarks, the number of consumers
can be either one (GPU pipeline 1), or two (GPU pipeline 2). For the pipelined
approaches, the number of producer threads is given by the total number of threads
minus the number of consumer threads. In general, more consumers can be selected.
However, this is often unfeasible because producers cannot deliver hash table results
fast enough to saturate more than two consumers. Figure 6.3 shows the speed-up in
the correction phase over the single-threaded CPU version.

With 64 threads, the CPU version achieves a speed-up of 49 over the single-threaded
implementation. Considering the GPU approaches with host-sided hash table opera-
tions, the simple version performs best if the number of used threads is low. This is
because the approaches with a producer-consumer pattern do not use all available
threads for producers, i.e. hash table queries. Increasing the number of threads in
the simple version has two disadvantages. First, concurrent CUDA commands, for
example launching kernels or performing memory operations, will eventually be
serialized by the driver which introduces contention and limits host-side throughput.
Second, each thread needs its own working set. The most amount of device-memory

64 Chapter 6 Performance of CARE

Fig. 6.3.: Speed-up over the single-threaded CPU version in the correction phase.

is required for the computations of alignments and multiple-sequence alignments.
Both drawbacks are accounted for when using the producer-consumer approach.
The number of consumers, which issue most of the GPU work, is limited to at most
two. This in turn reduces the driver contention as well as the number of large
working sets.

Switching to GPU-based hash tables removes the main performance bottleneck. With
only four threads, the warpcore-based approach with GPU hash tables achieves the
best performance. It is the most efficient parallelization. However, this comes at the
expense of high memory usage to store the hash tables in GPU memory. The GPU
memory consumption in megabyte is reported in Table 6.3.

Threads 1 2 4 8 16 32 64
GPU simple, CPU tables 4,307 4,405 4,601 4,964 5,687 7,135 9,517
GPU pipeline 1 - 4,307 4,341 4,409 4,514 4,755 5,239
GPU pipeline 2 - - 4,405 4,473 4,578 4,819 5,303
GPU simple, GPU tables 11,657 11,979 12,369 13,133 14,509 16,627 20,961

Tab. 6.3.: GPU memory usage [MB] during correction phase.

6.3 Merge phase

During the merge phase of the GPU version, corrections can be sorted on the GPU. Its
performance is limited by the available device memory and transfer rate. Common
GPU sorting algorithms such as radix sort do not operate in-place. Thus, both the
unsorted data and sorted data need to fit into device-accessible memory. If the
available memory is not sufficient, managed memory is used as a replacement which

6.3 Merge phase 65

allows the GPU to transparently access data residing on the host via PCIe bus. The
used workstation provides enough device memory to sort the corrections of dataset
S1 without the need of managed memory. This results in a speed-up of approx.
4.60s/0.62s = 7.42 over the CPU-based sort, including data transfer times.

6.3.1 Overall performance

The total speed-up over the single-threaded CPU version is presented in Figure 6.4.

Fig. 6.4.: Total speed-up of GPU version over CPU version.

In the following, only approximate runtimes are mentioned. The single-threaded
CPU version takes a total of 101 minutes to complete. The times spent in construction
phase, correction phase, and merge phase are 280s, 5730, and 30s, respectively.
With 64 threads, the total runtime is decreased to 200s (50s + 120s + 30s) which
corresponds to a speed-up of around 30.

The warpcore-based GPU approach achieves its peak performance with 4 CPU threads
submitting work to the device. The total runtime is 70s (25s + 20s + 25s), which
is around 2.8 times faster than the CPU version with 64 threads. The total runtime
of GPU pipeline 2 using 32 threads is 85s (30s + 30s + 25s). The speed-up over the
fastest CPU runtime is around 2.3.

Regarding overall memory usage, dataset S1 consists of 30, 085, 710 reads of length
100. Including quality scores, reads occupy a total of 3, 673 MB in memory. The 48
hash tables use 6, 400 MB. The remaining free host memory holds anchor corrections
and candidate correction. For dataset A1, those corrections add up to a total of
4, 307 MB.

66 Chapter 6 Performance of CARE

6.4 Performance with random forests

The previous performance benchmarks were repeated with random forest correction.
The corresponding results are shown in Figures 6.5, 6.6, and 6.7.

When random forests are used, the runtime increases. This is caused by irregular,
effectively random, memory access patterns when traversing the trees. This is a
performance hit especially for the GPU version, which requires contiguous memory
accesses for fastest access times.

With enabled Random Forests, the time spent in the correction phase by the single-
threaded CPU version increases by 33.5% from 5730s to 7650s. In contrast, using
forests with the GPU version comes with an increase in runtime of up to 55%.
The actual factor depends on the used parallelization scheme and on the number
of threads. The greater the GPU utilization without random forests, the larger
the increase in runtime when they are used. For example, the performance of
the simple GPU approach with CPU hash tables is limited by host-side hash table
operations. Enabling the use of random forests only increases the time spent in the
correction phase by up to 8%. The host-side performance is also limited by CUDA
API serialization caused by concurrent API calls from different threads. This is most
notable for high thread counts which submit GPU work.

Fig. 6.5.: Relative time spent in the different steps during correction with random forests.

6.4 Performance with random forests 67

Fig. 6.6.: Speed-up of GPU version over CPU version in correction phase with random
forests.

Fig. 6.7.: Total speed-up of GPU version over CPU version with random forests.

6.5 Read placement

For best performance, all data should be located on the GPU. Previous results
focused on the location of hash tables. However, the location of reads in the read-
storage is important, as well. If enough device memory is available after hash table
construction, the complete set of reads can be transferred to the GPU. This is the
case for the previous results. In this section, we take a look at the performance of the
correction step for the case when read data does not fit completely on the GPU and
must thus be distributed between host and device. This may be the case for large
datasets. In principle, there are three possibilities to distribute the reads between
the CPU memory and GPU memory: 1. Sequences on host, quality scores on host. 2.
Sequences on device, quality scores on host. 3. Sequences on host, quality scores on
device. Of course, it may also happen that either the array of sequences or the array
of qualities must be distributed between the memory spaces. However, we do not

68 Chapter 6 Performance of CARE

consider this case here. The performance simply improves with the amount of data
stored in GPU memory.

The best performance in the previous benchmarks was achieved with GPU hash
tables. Thus, moving data from the device to the host should have the greatest impact
which makes using GPU tables the most suitable configuration for this benchmark.
Figure 6.8 shows the runtimes of the correction phase with GPU hash tables for the
different read distributions in comparison to the full device data. Indeed, using one
thread the runtime increases by a factor of 6 when all read data is located on the
host. Using more threads, this problem is alleviated but the peak performance is
unmet. Comparing the configurations where exactly one part resides on the GPU,
the performance is better if quality scores are accessed on the device. This is because
8-bit quality scores occupy more memory than 2-bit sequences which would require
more data to be sent over slow PCIe bus otherwise. Of course, this is also true if
both parts are located on the host. This is confirmed by Figure 6.9 which shows
the same experiment conducted with 2-bit quality scores. Here, the runtimes with
either CPU sequences or CPU qualities are closer together. Placing qualities on the
CPU is slightly faster because they can be accessed on the host concurrently to the
alignment kernels. On the other hand, accessing sequences on the host cannot
overlap with other work.

Fig. 6.8.: Runtime of the correction phase with GPU hash tables depending on read data
location. 8-bit quality scores are used.

With common settings it is more likely that hash tables do not fit into device memory
and have to be kept in host memory. In this case, the best performance is achieved
with producer-consumer pipeline 2. Figures 6.10 and 6.11 show the data-dependent

6.5 Read placement 69

Fig. 6.9.: Runtime of the correction phase with GPU hash tables depending on read data
location. 2-bit quality scores are used.

runtimes for this approach. Runtime behaviour is different from the version with
GPU hash tables. This is because sequences and quality scores are accessed by
different types of threads, respectively. Producer threads access the sequences,
whereas the quality scores are accessed by the two consumer threads. For small
numbers of producers, the GPU is underutilized and performance is limited by the
processing speed of producers. The producers operate faster when sequences reside
in device memory. On the other hand, if the number of producers is sufficiently
high, the bottleneck shifts to the consumer threads which drive the main GPU
computations. Those consumers benefit from quality scores located on the device.

70 Chapter 6 Performance of CARE

Fig. 6.10.: Runtime of the correction phase with CPU hash tables depending on read data
location. 8-bit quality scores are used.

Fig. 6.11.: Runtime of the correction phase with CPU hash tables depending on read data
location. 2-bit quality scores are used.

6.5 Read placement 71

6.6 Performance comparison to other tools

To compare CARE to the state-of-the-art tools, performance was measured for the
correction of the largest dataset, dataset A4 (Human, 900M reads, HiSeq) with
machine M1. This dataset tests the multi-threading capabilities of the used tools,
which are required for the correction in a reasonable amount of time. To achieve
good performance, however, file access speed may be important as well. Two sets
of benchmarks were performed where the tools either read from and write to an
ordinary HDD connected via SATA, or read from and write to a two terabyte SSD
connected via PCIe.

For the benchmarks, CARE used 2-bit quality scores to limit the memory consumption
of reads. This allows to fit the whole read dataset comprising 47.7 GB into the device
memory of the A100 GPU. 48 host-side hash tables are used which occupy 163.6
GB in CPU memory. GPU pipeline 2 is used for parallelization with two consumer
threads. Table 6.4 presents the runtime and memory usage of the programs. Please
note, however, that the performance values for CARE were obtained from an older
version which did not include improvements implemented at a later point in time
when system M1 has no longer been available. Those improvements are explained
and evaluated in the next section. Nonetheless, we decided to present the collected
data. The reasons are two-fold. It still allows a general comparison of execution
times, and shows the possible performance benefits of using faster file storage.

Tool Threads Time HDD Time PCIe SSD Memory [GB]
CARE (CPU) 64 208 168 247
CARE (GPU A100) 2+26 59 45 247
CARE RF (CPU) 64 225 186 247
CARE RF (GPU A100) 2+20 65 46 247
Musket 64 193 187 138
SGA 64 417 405 37
Karect 64 5055 - 240
Bcool 64 380 376 43
Lighter 64 44 37 16
BFC 64 93 92 108

Tab. 6.4.: Total runtime of correction of dataset A4. Runtime is given in minutes.

The GPU version of CARE is more than three times faster than the CPU version.
Lighter and BFC are faster than CARE CPU. Lighter is faster than CARE GPU. The
slowest tool is Karect. Its performance bottleneck are accesses to two temporary
files used as double buffer of a total size of around 2.8 terabyte. The temporary files

72 Chapter 6 Performance of CARE

are required because the available system memory is not sufficient for Karect. The
available PCIe storage was not large enough to use with Karect.

The benchmarks using the PCIe SSD identify programs whose performance is limited
by file accesses. Lighter and CARE benefit the most from the fast storage and achieve
speed-ups between 18% and 30%. For other tools the improvements are only few
percents. In general, CARE may require file accesses in all phases of its algorithm.
The obvious accesses are reading the input file in the construction phase, and writing
the output file in the merge phase. During the merge phase, the input file is read a
second time to obtain the read headers. They are not used by CARE during error
correction and are thus not stored in memory to have more room for hash tables
and temporary corrections. Depending on the available system memory, the latter
may be spilled to disk which leads to write accesses in the correction phase, and
read accesses in the merge phase. This is the case for dataset A4. Karect could not
be run on SSD. Because of the vast amount of file accesses, around 12 TB read and
10 TB written, it should greatly benefit from fast storage.

In terms of reported memory usage, CARE has the highest memory consumption.
However, in general the measured memory is not strictly required. At its core, CARE
needs the reads and the hash tables to be located directly in memory. The remaining
free memory, if any, is then utilized to store temporary results. On systems with less
memory this leads to results being stored on disk instead at a cost of performance. A
similar principle applies to GPU memory. GPU versions of CARE are able to occupy
close to the maximum of available GPU memory, but it is not a hard requirement to
be able to run the program. CARE attempts to cache as much read data as possible
on the GPU for fast access. The remaining read data has to be fetched from slower
system memory.

6.7 Multi-GPU Performance

Multi-GPU systems provide greater compute power and an increased amount of
available device memory compared to single-GPU systems. In the ideal case of a
trivially parallelizeable program without dependencies between the workloads per
GPU, the performance scales linearly with the number of used GPUs. Furthermore,
an increased total device memory may allow to fit more data into fast GPU memory,
avoiding frequent transfers over the slow PCIe bus. Although accesses to memory
resident on a remote GPU come with reduced throughput, modern multi-GPU
systems typically use interconnects between GPUs that provides higher transfer rates

6.7 Multi-GPU Performance 73

than accesses over PCIe. System M2 was used for multi-GPU benchmarks with
datasets R2 (D.melanogaster, 75.9 million reads), and A4 (Human, 914.7 million
reads). While dataset R2 is larger than dataset A1, it is still small enough to fit both
reads and hash tables into the memory of a single GPU. This allows to measure the
performance using different data distribution schemes with different numbers of
GPUs. Dataset A4 is the largest of our datasets and requires the use of multiple
GPU to keep both reads and GPU-sided hash tables in device memory. Furthermore,
system M2 provides a large amount of system memory and fast file access speed
which can increase the performance especially for large datasets like dataset A4.

To submit work to multiple GPUs, there are generally two programming approaches.
The first approach is to use a dedicated CPU thread per GPU. In the second approach,
a single CPU thread orchestrates the work of multiple GPUs. As we have seen in
the previous single-GPU benchmarks, the usage of GPU hash tables achieves the
best performance with four threads. However, in a multi-threaded environment the
CUDA driver may use locks to coordinate access to internal resources. Implementing
the first approach would require to use four threads per GPU, i.e. 32 threads with 8
GPUs, and could lead to frequent locking. Thus, we chose to implement the second
approach which uses up to a total of four threads with any number of GPUs.

The development of our multi-GPU implementation uncovered missed opportu-
nities for optimizations. These include sequence encoding and quality encoding
on the GPU during read-storage construction, and faster result processing in the
merge phase that is part of both the CPU version and the GPU version. Those
optimizations have then been incorporated in the latest version of CARE and can
yield performance improvements of more than 40%. Unfortunately, at the time of
optimization, system M1 was no longer available for benchmarks. To better evaluate
the made improvements, we will not only present multi-GPU benchmarks of dataset
A4, but also compare single-GPU runs and CPU runs with improvements and without
improvements on system M2.

6.7.1 Dataset R2

We begin with the performance evaluation of dataset R2. GPU hash tables and a
batchsize of 8192 per GPU were used. The reads require 9.3 GB. The size of hash
tables is 12.8 GB. Random Forests were disabled.

Figure 6.12 shows how data distribution affects the multi-GPU speedup for dataset
R2. The single-GPU execution time of the correction phase is 66s. As expected,

74 Chapter 6 Performance of CARE

Fig. 6.12.: Multi-GPU speedup of the correction phase of R2 with GPU hash tables for
different data distribution schemes. A single thread is used.

avoiding all communication by replicating all data of hash tables and reads on each
GPU leads to the best performance. Similarly, no replication causes the greatest
amount of communication overhead. Using an even-share distribution of reads (i.e.
replicated tables) is slightly worse than distributing the tables.

The efficiency of using multiple GPUs decreases with the number of GPUs. There are
a number of factors in play here that limit the performance, namely CPU throughput,
inter-GPU communication, GPU load imbalances, and NUMA effects. Those factors
are best explained by taking a look at profiler reports generated with the NVIDIA
Nsight Systems profiler.

Figures 6.13 and 6.14 show the profiler timeline with 8 GPUs for the hashing and
the correction of a batch of 65,536 reads, respectively, with all data replicated on
each GPU. A single thread is used. The pictures are rotated to the left by 90 degrees.
The top of each picture contains 8 rows to show the activity of the respective GPU
(green: host to device transfer, blue: kernel, purple: device to host transfer, white:
idle). Below the black bar are section markers. The last row shows the CUDA API
calls made by the CPU thread (blue: kernel launch, green: synchronization, red:
memory operation).

Typically, CUDA API calls for kernel launches and memory copies are asynchronous
and may return before the corresponding GPU operation is complete. Thus, while
some kernel is executing on a GPU, the next kernel launch can be submitted on
the CPU ahead of time. With n GPUs, we aim to submit kernels to different GPUs

6.7 Multi-GPU Performance 75

Fig. 6.13.: Timeline to determine the
candidate lists per anchor.

Fig. 6.14.: Timeline to correct the an-
chors.

76 Chapter 6 Performance of CARE

in round-robin fashion. Still, each kernel launch takes time. The time between
kernel launches to the same GPU effectively increases by a factor of n, and leads to
the observable stair-case patterns which indicate delayed kernel execution on the
different GPUs in the left-hand picture. This can become a bottleneck for kernels of
short duration. For example, a short kernel A on GPU 1 could have finished before
the next kernel B can be launched on GPU 1, because the CPU may still be submitting
kernel A to other GPUs. Ultimately, this leads to GPU idle time. In our case, the
launch bottleneck affects many computations for anchor reads (8,192 per GPU), for
example when computing a prefix sum of the number of candidates per anchor to
obtain the corresponding segment offsets. The ratio between launch overhead and
kernel runtime could be improved by using larger batches. In general, however, the
batch size cannot be made arbitrarily large as this increases the memory footprint.
CUDA graphs could be used to mitigate kernel launch overheads to some degree.
CUDA graphs allow to define a workflow graph with fixed kernel parameters whose
execution is possible with reduced overheads. However, in our case many kernels
depend on the total number of candidates per batch which may be different for
each batch. To incorporate these kernels into a CUDA graph, one would need to
frequently update the graph or refactor the kernels. We did not attempt to use CUDA
graphs. The usage of up to four threads which process GPU batches helps to reduce
GPU idle time caused be scheduling overheads.

Load imbalances can occur during correction of a batch because the number of
candidates per anchor can be different which leads to different processing times
per GPU for alignments and MSA operations. It can be observed in the right-hand
picture after the longest stretch of blue GPU activity. NUMA effects caused by the
system topology can be seen at the end of the right timeline. When transferring
the corrected sequences back to host memory (purple GPU activity), the transfer of
roughly the same amount of data takes significantly more time from a set of four
GPUs compared to the other set of four GPUs.

Next, we focus on the communication overhead. Figure 6.15 shows the profiler
timeline of the code section that determines the number of hash table results per
anchor with even-share tables. Both sequences and sequence lengths need to be
broadcast from each GPU to each other GPU. Then, the hash table kernel is executed,
and result sizes are transferred back to the respective GPUs where the per-GPU
counts are summed up. Each transfer is an all-to-all communication involving n2

copy operations. Since the transfer sizes are small, the communication steps are
bottle-necked by CPU-side API throughput. Overall, the additional steps required for
multi-GPU execution take up around 80% of the execution time for this piece of the
algorithm.

6.7 Multi-GPU Performance 77

Fig. 6.15.: Multi-GPU hash table access
with all-to-all copies using
CUDA API calls.

Fig. 6.16.: Multi-GPU hash table access
with all-to-all copies using
copy kernels.

The communication costs can be reduced by using custom copy-kernels. Within a
kernel, it is possible to directly access the memory of other GPUs. Since the eight
GPUs are fully-connected, all remote transfers will use NVLINK connections instead
of the PCIe bus. Thus, the n2 copy API calls per all-to-all can be replaced by n

copy-kernels which copy the data of one GPU to all the other GPUs. This increases
the CPU throughput and overall performance and is the approach we used for all
our multi-GPU benchmarks. Figure 6.16 shows the corresponding timeline with
copy-kernels.

6.7.2 Dataset A4

First of all, we conducted CPU benchmarks and single-GPU benchmarks with our
previously mentioned latest optimizations enabled and disabled. The host memory
limit was set to 512 GB. The single-GPU pipeline uses CPU hash tables, 20 producer
threads and 2 consumer threads. The batchsize was set to 8192. 2-bit quality scores
were used. Those benchmarks serve multiple purposes. Besides the quantification
of improvements, it shows the hardware capabilities of system M2. The increased
amount of system memory avoids spilling results to disk and allows to construct
all 48 hash tables with two passes over the reads. The faster file system accesses

78 Chapter 6 Performance of CARE

improve reading the input file and writing the output file. And last, the benchmarks
give a performance baseline to evaluate the multi-GPU approach.

Table 6.5 shows the measured program execution times. The GPU version greatly
benefits from the improved merge phase. It is up to 42% faster than the previous
version. The CPU version is limited by correction performance which diminishes the
relative performance improvements of the revised output construction.

Threads Time (Old) Time (Improved)
CARE (CPU) 64 179:29 169:41
CARE (single-GPU) 2+20 32:02 18:32
CARE RF (CPU) 64 198:51 189:03
CARE RF (single-GPU) 2+20 33:59 19:44

Tab. 6.5.: Comparison of the improved versions on M2. The single-GPU version uses CPU
hash tables. Times are given in minutes:seconds.

Next, we shift the focus to multi-GPU execution. First, Table 6.6 presents the the
runtime of multi-GPU distributed hash table construction.

GPUs 1 2 3 4 5 6 7 8
Time - - 82 75 56 29 26 24

Tab. 6.6.: Runtime in seconds for GPU minhasher construction with multiple GPUs. The
construction of CPU hash tables with a single GPU takes 220 seconds.

The hash tables take up 163 GB. Thus, at least three GPUs are required to store the
tables in device memory. Recall that CARE uses a two-phase hash table construction
where over-occupied buckets are removed in the second phase. With 5 or less GPUs,
there is not enough GPU memory available to use as temporary storage. This requires
the use of managed memory which reduces performance compared to the execution
times with 6 or more GPUs. In addition, the performance gain for construction with
any number of GPUs is limited. For the second phase one host thread per GPU is
used because warpcore performs blocking operations internally that would prevent
issuing work to multiple GPUs when only one thread were to be used for all GPUs.
However, the deallocation of the initially constructed multi-value hash tables acts as
a global execution barrier and blocks the calling thread until all work on all GPUs is
completed. This causes frequent execution stalls.

Next, we present benchmarks for full program execution. The previous benchmarks
for dataset R2 suggest that one should minimize inter-GPU communication. With
the memory requirements of GPU hash tables of dataset A4, distribution of hash

6.7 Multi-GPU Performance 79

tables amongst the GPUs is inevitable. However, with enough GPUs the per-GPU
portion of hash tables is small enough to be able to replicate the reads on each GPU.
Using 8 GPUs, the hash tables consume around 21 GB per GPU. The reads with 2-bit
quality scores require a total of 47 GB. This leaves enough memory to perform the
correction. With four threads, 8 GPUs, and disabled Random Forests, the time spent
in the correction phase is 69s with replicated reads and 90s with distributed reads.

To conclude the performance evaluation of CARE, we determined the fastest configu-
rations for dataset A4 depending on the number of GPUs and present the individual
contributions to runtime in Table 6.7.

GPUs 0 1 2 3 4 5 6 7 8
Config A B B C C C C D D
Load input file 03:55 02:10
Table construction 18:35 03:40 01:22 01:15 00:56 00:29 00:26 00:24
Correction (no RF) 141:29 08:37 07:40 02:45 02:10 01:56 01:41 01:15 01:09
Correction (RF) 160:51 09:48 07:48 03:54 02:50 02:28 02:10 01:41 01:31
Sort results 02:42 01:05 00:15
Merge + Output 3:00
Total (no RF) 169:41 18:32 16:45 09:32 08:50 08:17 07:35 07:06 06:58
Total (RF) 189:03 19:43 16:53 10:41 09:30 08:49 08:04 07:32 07:20
Speedup (no RF) 1.0 9.2 10.1 17.8 19.2 20.5 22.4 23.9 24.4
Speedup (RF) 1.0 9.6 11.2 17.7 19.9 21.4 23.4 25.1 25.8

Tab. 6.7.: Best configuration depending on the number of GPUs. (A) CPU version – 64
threads, (B) GPU version with CPU hash tables and replicated reads – 2 consumers
and 20 producers per GPU, (C) GPU version with GPU hash tables and distributed
reads – 4 threads, (D) GPU version with GPU hash tables and replicated reads –
4 threads. Runtimes are given in [minutes:seconds].

In general, the parts of CARE that are amenable to GPU parallelization, table
construction and read correction, achieve impressive speedups compared to a purely
CPU-based implementation with 64 threads. Using a single GPU with CPU-sided
hash tables already gives a great speedup of more than 16 in the correction phase.
Yet, this approach should be avoided with multiple GPUs, if possible. It requires to
scale the number of producer threads with the number of GPUs to deliver enough
input to the GPUs. With that many threads, runtimes may become unpredictable and
performance becomes hard to analyze. For example, correction with Random Forests
on two GPUs takes almost the same time than without Random Forests whereas with
a single GPU the performance using the Random Forests is 12% slower. Still, given
the memory constraints we have no other options to make use of a second GPU.

80 Chapter 6 Performance of CARE

With three to six GPUs, the best performance is achieved with GPU hash tables
and distributed read data with four threads. Replicating the reads either led to
out-of-memory errors for any number of threads (3-5 GPUs), or required the use of
only one thread instead of four threads (6 GPUs; the replicated version with a single
thread took 02:16 minutes in the correction phase without RF). With seven or eight
GPUs CARE is able to use four threads in both the replicated case and the distributed
case. As explained previously, replicating the reads provides better performance.

To sort the results of dataset A4 using a GPU, more than 100 GB of device-accessible
memory are required. In the single-GPU case, managed memory is used to overcome
the memory limitations. When the combined memory of multiple GPUs is able to
provide the required memory, we use the CUDA virtual memory management API
to create a contiguous allocation of sufficient size that is backed by the physical
memory of multiple GPUs. Compared to the single-GPU case, this uses NVLink
inter-GPU accesses instead of PCIe communication with the host and in general
avoids the managed memory page migration overhead which leads to improved
performance.

Considering the total program execution time, the multi-GPU efficiency decreases
with the number of GPUs since the performance bottleneck is shifted to different
parts of the program, namely file input and result construction. The times are
negligible for the CPU version, but already with just one GPU, the GPU-parallelized
code sections account for only around 50% of the total runtime. With 8 GPUs,
this decreases to 20%. The achieved multi-GPU efficiency is 33%. For further
improvements, we would need to focus on the input step and merge step. For
example, both steps perform sequence file parsing which could also be accelerated
with GPUs. However, the actual file accesses can only be improved by using faster
hardware.

6.8 Proof-of-concept: Sequence parsing on the GPU

To extract usable sequencing reads from a decompressed input file, two steps are
required. First, a chunk of raw data must be fetched from the file. Then, this
data must be parsed according to the file format. In the case of FASTA and FASTQ
files, parsing involves identifying line ends and the type of data in this line (header,
sequence, or quality), and copying and concatenating the lines into contiguous
output buffers which store headers, sequences, and quality scores, respectively. Our
sequence file reader parses the data sequentially on the CPU. This may be sufficient

6.8 Proof-of-concept: Sequence parsing on the GPU 81

if file accesses are slow, for example when reading from an ordinary HDD with
transfer rates of about 100 MB/s. However, during our experiments on machine M2
with fast file accesses, we noticed that the actual parsing of the raw data can take
up to 50% of the read extraction time. If the read data is intended to be used on the
GPU, it may be feasible to perform the parsing step directly on the GPU to benefit
from its high memory bandwidth and parallel processing capabilities. Depending on
the actual performance values, GPU parsing could even be beneficial if the results
should be stored in host memory. In this section, we will present a proof-of-concept
of this approach.

For simplicity, our experiment only focuses on the FASTQ format which allows
an easy identification of the read number and the type of line data in a parallel
environment based on the line number (1. header, 2. sequence, 3. separator, 4.
quality scores). In general, sequences in FASTA files can span multiple lines and
different numbers of lines, which makes it more difficult to parse in parallel. In
addition, we do not check for inconsistencies in the data, for example empty lines or
mismatching lengths between a sequence and its quality scores. Furthermore, we
only consider the parsing of a single chunk of data which fully contains all the reads.
A real parser would need additional book-keeping to handle the cases where reads
are split between multiple chunks of data.

The actual device-side algorithm can be composed of a few standard parallel algo-
rithms like reduction, stream-compaction, and prefix-scan, all of which are provided
by the CUB library. We use a parallel reduction to count the number of new-lines
(’\n’) in order to allocate an exact amount of memory for the following steps without
over-provisioning. Next, we use stream compaction to find the actual positions of
new-line characters. Subsequently, the line type and the number of data bytes per
line are determined. What is left to do is to copy the line segments into the correct
output buffers according to their line type. An inclusive prefix-sum over the segment
sizes is performed per line type to compute the destination offsets in the respective
target buffer as well as the total size of the target buffer. After resizing the buffers
accordingly, the line segments are copied to the respective positions.

For our benchmark, we used machine M2 with a single GPU and a FASTQ file
comprising of the first million of reads of dataset A4. The corresponding file size is
around 219 MB. The aim is to produce five buffers. Three buffers store flat arrays
of headers, sequences, and quality scores. The two remaining buffers store the
per-read begin offsets of headers and sequences, respectively. As CPU reference, we
implemented a minimal sequential CPU version for FASTQ parsing.

82 Chapter 6 Performance of CARE

We measured a file reading time of 60 ms which corresponds to a transfer rate
of around 3.6 GB/s. The minimal parsing of that data on the CPU took 52.36 ms.
The duration of the parsing step of CARE’s file reader, which performs multi-chunk
parsing and consistency checks was around 62 ms. To be able to parse the data
on the GPU, it needs to be present in device memory. The involved data transfer
took 8.96 ms. The subsequent parsing step required 7.82 ms. A final transfer of the
parsed data back to the host took 9.14 ms. In total, using the GPU to produce results
on the host required 25.92 ms which is twice as fast as parsing on the CPU. If the
parsed data can be left on the device, the last transfer can be omitted, resulting in
an execution time of 16.78 ms. This is around 3.6 times faster than parsing the raw
data on the CPU and transferring the parsed data to the GPU. Please note that we
did not include device memory allocation times of 3.5 ms, as one would re-use the
same buffers for multiple chunks in practice.

Table 6.8 gives an overview of the expected speedup with GPU parsing for the case
of host-sided results, depending on different file transfer rates. Table 6.9 shows
the corresponding speedup for device-sided results. For machines with slow file
storage the benefits of GPU parsing are negligible. Yet, if fast file accesses are
possible, parsing the raw data on the GPU can give a speedup of more than 33%. In
the context of CARE, a GPU-accelerated file parser could potentially reach greater
speedups. This is because the parsed data which is transferred back to the host
would be of lesser size since at least the sequences would be 2-bit-encoded.

Transfer rate [MB/s] 128 256 512 1024 2048 4096
File access [s] 1.7109 0.8555 0.4277 0.2139 0.1069 0.0535
CPU parsing [s] 0.0524
H2D+GPU parsing+D2H [s] 0.0259
Total GPU speedup 1.0153 1.0301 1.0584 1.1105 1.1995 1.3338

Tab. 6.8.: Speedup of GPU-accelerated FASTQ parsing when the parsed data should be
stored in host memory.

Transfer rate [MB/s] 128 256 512 1024 2048 4096
File access [s] 1.7109 0.8555 0.4277 0.2139 0.1069 0.0535
CPU parsing + H2D [s] 0.0615
H2D + GPU parsing [s] 0.0168
Total GPU speedup 1.0259 1.0512 1.1006 1.1938 1.3614 1.6358

Tab. 6.9.: Speedup of GPU-accelerated FASTQ parsing when the parsed data should be
stored in device memory.

It is worth pointing out that in case of multi-chunk processing, the overall execution
time of both approaches could be further reduced by using separate threads for

6.8 Proof-of-concept: Sequence parsing on the GPU 83

file accesses and parsing. This would allow overlapping parsing the current chunk
with the loading of the next chunk. Additionally, using a GPU for parsing enables
more potential improvements. For the parsing of compressed files less data needs to
be read from file. However, its sequential decompression on the CPU is slow, as is
shown in Table 6.1. If a compression algorithm were used which allows for parallel
decompression, the decompression could take place on the GPU. This would lead to
reduced file access times, reduced transfer times between host and device, and faster
decompression. And last, NVIDIA GPUDirect Storage could be used on compatible
systems to directly load file data into device memory using a direct memory access
(DMA) path which does not require staging the data in host memory.

84 Chapter 6 Performance of CARE

Conclusion 7
NGS datasets are affected by errors. While there exists a variety of tools which tackle
the problem of error correction in preparation of downstream analysis, its results
can be negatively impacted by the presence of false-positive corrections. CARE
is an MSA-based tool for error correction of Illumina datasets which can utilize
pre-trained random forests for highly accurate sequence modifications.

The evaluation shows that CARE produces around two orders-of-magnitude fewer
false positives than state-of-the-art error correction software. At the same time,
the number of true positive corrections is on par with those of other tools. This is
beneficial for k-mer analysis and de-novo genome assembly. The CPU version of
CARE has been integrated into the quality control software RabbitQCPlus 2.0[82]

The processing of CARE is performed in highly parallel fashion to exploit the capa-
bilities of modern hardware. The usage of GPUs allows for faster, more efficient
computations. However, achieving peak performance requires both a fast CPU and
GPU, as well as sufficient device memory. With low CPU performance, it may be
difficult to keep a fast GPU utilized. GPUs with small device memory require more
frequent data accesses over slow interconnect. Depending on the used hardware
different parallelization strategies may be required. For best performance, all data
should reside in GPU memory, and inter-GPU communication should be kept at a
minimum. On a modern multi-GPU server, the Random Forest-based correction of a
Human dataset with 30x coverage takes 3 hours with the CPU version of CARE, 20
minutes with a single GPU, and 7.5 minutes with 8 GPUs. With decreasing runtimes
for compute intensive portions of the program, the performance of other parts like
file IO and sequence parsing becomes increasingly important. Performance evalua-
tion shows a speedup of up to 40% when CARE operates on a fast PCIe SSD instead
of an ordinary hard disk drive.

Further research could be conducted in two areas. On one hand, there exist other
sequencing technologies such as Oxford Nanopore or PacBio which are long-read
platforms. Tackling the error correction of those kind of reads would introduce new
challenges due to significantly longer reads, different types of sequencing errors like
insertions and deletions, and higher error-rates. For instance, the current alignment
computation via shifted hamming distance would no longer be viable. It would

85

need to be replaced by an actual semi-global alignment. On the other hand, while
CARE is able to use random forests for improved correction quality, other machine
learning techniques may prove beneficial, as well. For example, our MSAs could
be interpreted as a multi-channel image which can be passed to a deep neural
network for the detection of sequencing errors. Our hand-selected features which
are currently used for the random forest may not be optimal whereas a neural
network could learn different, better features from the MSAs.

86 Chapter 7 Conclusion

Part II

Read extension

CAREx: Context-aware read
extension

8

Short-read sequencing platforms such as Illumina produce reads of a few hundred
basepairs. Some bioinformatic applications, however, work better with longer
reads. For example, a common problem of genome assembly is repeat resolution.
Repeats can only be resolved accurately by reads which are longer than the repeated
structure.

Short paired-end reads are often produced with a high depth of coverage. The
average distance between the far ends of reads, the so called insert size, can be
estimated from the sequencing technology. Given such a read pair, the redundancy
of data can be used to reconstruct the nucleotides in-between the reads of the pair.
This results in a longer read, a so called pseudo-long read. In the most simple case,
the insert size is less than the sum of read lengths of the pair. This indicates that
both reads must overlap. Finding pseudo-long reads is more challenging if the insert
size is greater than the sum of read length. There are unknown nucleotides which
need to be determined in order to produce the pseudo-long read.

Our research focuses on the latter case of non-overlapping reads for NGS sequences
from the Illumina platform. CAREx is our newly developed application which
produces pseudo-long reads given an input file with short paired-end reads. Its
algorithm is based on local assembly with the goal of producing a contig that is
delimited by the reads of a read pair. Candidate sequences that could be used
for assembly are determined using hash tables. The algorithm of CAREx builds
upon the CARE algorithm. It utilizes the same data structures like read-storage and
minhasher, as well as the same algorithmic building blocks such as the computation
of a shifted hamming distance and the construction of a multiple-sequence alignment.
In contrast to CARE, CAREx uses an iterative algorithm which performs multiple
passes of hashing, alignment, and MSA construction to produce a pseudo-long read
for a single input read pair.

89

8.1 Related Work

Early work addressed only the simple case, where the insert size is less than the sum
of read lengths of the pair. In this case both reads overlap. A pseudo-long read can
then be obtained by finding the best overlap with respect to the insert size. This
approach is used by FLASH [51], COPE [43], and PEAR [83].

Extending short read pairs to pseudo-long reads is more challenging if the insert
size exceeds the sum of read lengths. In this case, there are unknown nucleotides
which need to be determined from other overlapping reads in order to produce
a pseudo-long read. This problem can be formulated as a small local assembly
operation, creating a small contig that is delimited by the two reads of a pair.

Existing approaches which extend a given read until its partner (mate) is found
are based on detecting overlaps between k-mers. They can be distinguished by
their utilized data structures and specific extension rules. GapFiller [55] and Eloper
[73] employ simple seed-and-extend strategies based exact matches using hash
tables. Konnector2 [79] constructs a De Bruijn graph from the k-mers of all reads.
Subsequently, the De Bruijn graph is traversed for each read pair to find a connecting
path, which is then translated into a pseudo-long read. MaSuRCA [84] is a genome
assembler that is build around the construction of super-reads. It extends a read on
each end base per base as long as there is only exactly one possible base to append.
The k-mer spectrum of the input read dataset is used to verify that only one possibility
exists. Aside from contig assembly, the construction of pseudo-long sequences can
also be used by genome assemblers to bridge gaps between contigs within a scaffold
[28, 7, 50]. PLR-GEN [74] creates pseudo–long reads from clustered metagenomic
short reads based on given reference genome sequences.

8.2 Algorithm

The computation of pseudo-long reads in CAREx revolves around the processing
of so called extension tasks. Given a starting sequence S, an extension task will
iteratively append suitable nucleotides to the 3′ end of the sequence until a stop
condition is met. This is performed by constructing MSAs of reads similar to S. Then,
a substring of the MSA consensus is used to elongate S.

Let S1,S2 be two sequences that form a read pair. Let RC1, RC2 be the reverse
complement sequences of S1 and S2, respectively.

90 Chapter 8 CAREx: Context-aware read extension

For this read pair, four extension tasks, T1, T2, T3, and T4, are created with different
starting sequences, namely S1, RC2, S2, and RC1, respectively. Figure 8.1 shows the
initial sequence layout of the four extension tasks, and how those tasks move in 3′

direction in one iteration of the algorithm.

Fig. 8.1.: Layout of the four sequences for extension tasks.

Tasks 1 and 2 are considered partner tasks, as well as tasks 3 and 4. Tasks 1 and
3 are primary task with the goal of finding the end of the pseudo-long read, i.e.
task 1(3) will stop if RC2(RC1) has been reached. Tasks 2 and 4 are auxiliary tasks
connected to tasks 1 and 3, respectively. They terminate as soon as their partner
task stops. In addition, each of the four tasks can end if it is no longer possible to
perform an extension of the sequence. The tasks are processed simultaneously. After
all four tasks are completed, the pseudo-long read of the read pair is constructed, if
possible, from the generated extended sequences of tasks 1 and 3. Furthermore, the
generated sequences of T2 and T4 can be appended to the respective ends of the
constructed pseudo-long read to extend the read pair in outward direction. Outward
extension is not the main focus of CAREx and is disabled by default.

8.2.1 Construction phase

In the construction phase, the dataset is loaded into memory. Hash tables are
constructed from the reads to quickly find similar reads to a given query read.
The construction phase is identical to the construction phase of CARE, see Section
4.3.1.

8.2 Algorithm 91

8.2.2 Extension phase

This subsection will explain the steps necessary to construct a pseudo-long read for
a single read pair after the four extension tasks have been created. The steps are
repeated for each read pair in the dataset.

Extension task processing

At the beginning of a processing iteration of a task, its sequence S is queried against
the hash tables to retrieve a set C of potentially similar candidate sequences with the
intention of constructing an MSA centered around S. In general, this is performed
using the same steps as in CARE, namely shifted hamming distance computation,
alignment filtering, and MSA construction with refinement, potentially using a read’s
quality scores. However, there are some differences to CARE in the alignment
computation and the alignment filtering, which will be described below.

For the alignment computation using shifted hamming distance, only alignments
with positive shifts are considered. This is because the task aims to extend its
sequence only on the right end, not on the left end. In addition, valid alignments
must overlap with the anchor by at least 50% (default). Within this overlap, at most
5% (default) mismatches are allowed.

Recall that the four tasks of a read pair are processed simultaneously and that
auxiliary tasks may have terminated in a previous iteration because extension could
no longer be performed. In case both the primary task and its auxiliary task are still
running, candidate pairs are identified as in CARE via their corresponding read ids.
In addition, candidate pairs are also considered if one of the reads was already used
by the partner task in a previous iteration. For example, let C1 = {r0, r5, r8} and
C2 = {r2, r9} be the candidate sets of task 1 and task 2, respectively. Additionally, let
U2 = {r4, r13} be the set of candidates used in a previous iteration. Then candidates
r5 and r8 of task 1 are considered paired candidates, as well as candidate r9 of task
2. Paired candidates are assumed to originate from the same genomic region as
the pseudo-long read to be constructed. If either the primary task or its partner
task is already finished, all candidates are treated as unpaired. When the alignment
filter is applied, paired candidates are kept unconditionally. Unpaired candidates
are removed depending on their alignment overlap. Let Oi be the relative overlap
size between unpaired candidate i and the anchor S. Let T = maxi(⌊Oi · 10⌋/10) .
Then unpaired candidates with Oi < T are removed.

92 Chapter 8 CAREx: Context-aware read extension

After candidates have been filtered, and a refined MSA M has been constructed
in the same manner as CARE, the consensus string of M is used to compute an
extended sequence S′ from S. Let column i of the MSA be the first column of M that
is not covered by the anchor read S. The algorithm determines column j ≥ i where
j − i < stepsize, the coverage of column j ≥ m, and j maximal. Let n = j + 1 − i.
Then the extended sequence S′ is computed as S′ = S[n : |S|] + consensus[i : i + n].
That is, S′ is obtained by appending a consensus substring of length n to S and
removing the first n nucleotides from S. stepsize and m are parameters of the
algorithm with default values of stepsize = 20, and m = 3. In contrast to CARE’s
usage of the MSA consensus, no elaborate decisions about whether or not to use
the consensus nucleotide can be made in CAREx, because there is no fallback to the
anchor nucleotide.

There are three different outcomes of the computation of S′.

1. The algorithm may fail to compute S′ if either column i or column j do not
exist. This can be the case if the number of columns in M is |S|, or if all
columns to the right of column i have low coverage. If computation fails, the
task terminates.

2. When computing S′ in a primary task the algorithm may find that the target
sequence, i.e. the read’s mate, has been reached. In that case, the task
terminates, as well.

3. Extension succeeds without reaching the mate. The task’s sequence S is
updated to S′ and the next task iteration begins.

Finalization

Eventually, all four tasks of a read pair will be finished. In a last step, the pseudo-long
reads of the tasks are merged to find the pseudo-long read of the read pair, i.e a
pseudo-long read that connects S1 and S2, on any strand. The construction of the
final extended read from the four tasks can be controlled by a parameter called strict
mode. We currently provide three different levels of strictness.

Strict mode 2 is the most restrictive. If both T1 and T3 have finished after finding the
target sequence, and both tasks produced a connection of same length between the
reads, this connection is used only if the hamming distance between the connections
of the two tasks is less than some parameter x. By default, we require an exact
match. In all other cases, the read pair remains unconnected.

8.2 Algorithm 93

Strict mode 1 includes mode 2. In addition, mode 1 can handle the case where only
one of T1 or T3 found the mate. For example, assume T1 found its mate and the
size of the filled gap is s. Then the connection is used if the overlap between the
filled gap of T1 and the incomplete filled gap of T3 is at least of size y (default: 50%
of s), and the overlap contains at least z% matches (default: 95% of s).

Strict mode 0 is the least restrictive. If either T1 or T3 have finished after finding the
target sequence, their corresponding result sequence is used as the pseudo-long read.
For some read pairs, neither of both primary tasks may have finished successfully.
Yet, they may have computed sufficiently long, but incomplete, pseudo-long reads.
If agreeable with the estimated insert size, the result sequences of both tasks are
merged to form the pseudo-long read of that read pair. Otherwise, the read pair is
not connected. The merge will only be performed if the suffix of one sequence can
be overlapped with the prefix of the reverse complement of the second sequence
by at least 40 positions with at most 5% mismatches. In case of multiple possible
overlaps, the longest overlap is chosen.

Figure 8.2 gives an overview of possible scenarios for different levels of strictness. In
any case, if it was possible find a pseudo-long read that connects S1 and S2, results
of T2 and T4 may be used to further elongate it on both ends. This is achieved by
simply appending the extended nucleotides of those tasks to the appropriate ends of
the pseudo-long read, respecting the correct strand.

In all cases, for positions in the pseudo-long reads which correspond to the original
reads the original nucleotides are used, i.e. no modifications to the original reads
are performed.

94 Chapter 8 CAREx: Context-aware read extension

S1 RC2

RC1 S2

S1 RC2

RC1 S2

S1 RC2

RC1 S2

S1 RC2

RC1 S2

S1 RC2

RC1 S2

1.

2.

3.

4.

5.

Accept Strict 0 Strict 1 Strict 2

1 YES YES YES

2 YES YES NO

3 YES NO NO

4 YES NO NO

5 YES NO NO

Fig. 8.2.: Five different outcomes of extension task processing. Mismatches between the
two strands (i.e. non-complementary bases) are marked in red. The right-hand
table indicates whether a pseudo-long read can be constructed for a specific
strictness.

8.2 Algorithm 95

8.3 Implementation

CAREx is available on Linux as a multi-threaded CPU version written in C++ as
well as a GPU version written in CUDA/C++ which can utilize CUDA-capable GPUs
for high performance. The overall algorithm is embarrassingly parallel since read
pairs can be processed independently. Thus, the main processing loop which iterates
over all read pairs is trivially parallelizeable. In the CPU version, C++ threads are
utilized for parallelization of the main loop. Each thread produces a list of read ids
for which no pseudo-long read could be constructed.

The GPU-accelerated processing of the main loop comes with two challenges in
regards of GPU utilization: load imbalances and hash table accesses.

Read pairs are processed in batches. One challenge is the presence of load imbalances
in a single batch. Extension tasks may terminate at any iteration which can lead to
poor performance when the number of active tasks within a batch is too small to fully
occupy the GPU. This problem is solved by using dynamic-sized batches. For each
batch there are two sets of tasks, active tasks and finished tasks. The active tasks
are processed simultaneously on the GPU. After each extension iteration, terminated
tasks are moved from the set of active tasks to the set of finished tasks. Whenever
the number of active tasks falls below a predefined threshold, new tasks for yet
unprocessed read pairs are added to the set of active tasks until its size reaches the
defined batch size.

The finished tasks are handled in similar fashion. Recall that for each read pair there
exist four extension tasks. Only when all four tasks are finished, the final pseudo-
long read can be constructed. Whenever the number of finished tasks surpasses a
threshold, read pairs with four finished tasks are identified, their resulting pseudo-
long reads are constructed on the GPU, and the corresponding tasks are destroyed.
The thresholds for both sets of tasks are chosen empirically such that small, inefficient
GPU workloads involving the two sets of tasks do not occur frequently.

Hash tables may be placed in either GPU memory or CPU memory. The second chal-
lenge is to minimize the performance bottleneck of host-sided hash table operations.
In CARE, this was achieved by a producer-consumer approach to overlap GPU-sided
error correction steps of a batch with CPU-sided hash table accesses of a different
batch. In CAREx, multiple processing iterations are performed per batch where hash
tables are queried in each iteration. This introduces dependencies between succes-
sive iterations and prohibits overlapping hash table operations and read extension
operations of the same batch. However, iterations of different, independent batches

96 Chapter 8 CAREx: Context-aware read extension

may still be processed concurrently, and are indeed processed in that manner in
CAREx. This is explained in the following paragraphs.

When hash tables reside in CPU memory, two sets of threads, H and E, are used.
Threads in set H perform hash table queries, whereas threads in set E are responsible
for read extension. In principle, this approach also follows a producer-consumer
pattern. However, there are no dedicated producer threads or consumer threads
because of the circular dependency between the two sets as batches are passed
between the sets in both directions. Communication between sets is achieved via
queues QH and QE . Batches in QH (QE) are processed by set H (E).

A thread in set H removes a batch from QH , resizes the batch accounting for load
imbalance as described above, and performs hash table operations. Last, the batch
is submitted to QE . When the batch is subsequently processed by a thread of set E

one extension iteration is performed. After this iteration, the batch may contain both
active tasks and terminated tasks. The latter are moved to the set of finished tasks,
which are subsequently processed avoiding load imbalance as described above. The
thread finishes the processing of this batch by placing it in QH .

Initially, |E|+ |H| empty batches are placed in QH . The overall processing of batches
terminates when the number of processed read pairs equals the total number of
read pairs in the dataset. Depending on the actual hardware, one or two threads
which perform extension are sufficient, but need to be complemented with 8 or more
threads responsible for (slow) hash table lookups.

While this parallelization approach leads to increased performance, memory usage
increases as well. This may require a trade-off between processing speed and
memory consumption. However, this is only the case for host-sided hash tables.
When hash tables are placed on the GPU this elaborate scheme is not required.
Instead, similar to CARE, only a few threads are required to keep the GPU utilized,
and those threads perform both the hashing step and the extension step.

CAREx has multiple output options. First, outward extensions can be enabled or dis-
abled. Second, the output can consist exclusively of pseudo-long reads. Alternatively,
read pairs which could not be extended can be included in the output as well. Lastly,
the output can be sorted with respect to the input file. When a pseudo-long read is
constructed, it is submitted to a separate worker thread. It then is either immediately
written to file in case of unsorted output, or temporarily stored in memory otherwise.
The sorting is performed after the extension phase is finished.

8.3 Implementation 97

Evaluation of CAREx 9
Read extension was evaluated on both simulated datasets and real-world datasets.
For both types of datasets, the number of connected read pairs is determined, as
well as the accuracy of extensions. In addition, the quality of de-novo assembly
using extended real-world reads is evaluated. We compared the results of CAREx
to publicly available standalone tools that can produce one pseudo-long read per
input read pair. In our evaluation, we did not consider the build-in gap closing
functionality of assemblers since they only operate at contig-level. Thus, we chose
GapFiller 2.1.2 and Konnector 2.2.4 as competitors for the evaluation.

For simulated datasets the exact location of each read within its reference genome is
known. This allows for detailed statistics of the generated pseudo-long reads. For
example, the edit distance in the filled gap of the pseudo-long read can be computed.
It is also possible to confirm the correct distance between the two reads within their
produced pseudo-long read. For real-world datasets, however, no reference positions
are known. Yet, some insight can be obtained by aligning the pseudo-long reads
to a reference genome. Aside from alignment-based metrics, quality of extended
real-world datasets can be measured by investigating the impact on down-stream
analysis of extended datasets.

To facilitate an easier evaluation, CAREx outputs the exact read positions within
a pseudo-long read. This allows to quickly identify the outward extension and
the filled gap. While Konnector2 is also able to perform outward extensions, it is
lacking the read positions within the pseudo-long reads which prohibits an accurate
evaluation. Thus, no outward extension for Konnector2 is performed. In this case,
the reads are located at the begin and at the end of the pseudo-long read. The same
is true for GapFiller which does not support outward extension.

The remainder of this chapter is structured as follows. After introducing datasets
and program settings used for evaluation, we first present metrics for simulated
datasets extended by CAREx. Here, we will show the number of connected reads
and their error rate, and analyse the pseudo-long read lengths. Then, the evaluation
on real-world datasets is presented. Afterwards, we investigate how read-extension
is affected by sequencing errors and by error correction with CARE. The chapter
closes with the performance evaluation.

99

9.1 Datasets

Name Organism Cov. Read pairs Length Insert size stddev
S1 C.elegans 30x 15.0M 100 300 5
S2 C.elegans 30x 15.0M 100 500 10
S3 C.elegans 30x 15.0M 100 1000 30
S4 C.elegans 60x 30.1M 100 1000 30
S5 D.melanogaster 30x 18.0M 100 500 10
S6 Hum. Chr. 14 30x 13.2M 100 500 10
S7 C.elegans 30x 10.1M 150 500 150
R1 D.melanogaster 64x 37.9M 101 598 39
R2 Human Chr 21 33x 6.7M 100 312 14
R3 Human (NA12878) 30x 304.6M 148 546 117

Tab. 9.1.: Simulated (S1-S7) and real-world (R1-R3) datasets used for evaluation.

Simulated datasets were generated using the ART read simulator. Three differ-
ent reference genomes were used: Drosophila melanogaster (D.melanogaster),
Caenorhabditis elegans (C.elegans), and Human (Chromosome 14). We chose
datasets with varying properties to investigate the impact on read extension. S1-S6
were simulated using ART’s HiSeq 2000 profile which yields reads with a sequencing
error-rate of around one percent. Datasets have a coverage of 30x and 60x, and
read length 100. Three sets of insert sizes were used: 300, 500, 1000 with standard
deviations 5, 10, 30, respectively. Read lengths of a read pair are included in the
specified insert size. That is, the average gap size between the two reads of a read
pair is insert size −200. Dataset S7 was simulated with a more recent TruSeq profile
and has a larger standard deviation for insert size. Its error-rate is around 0.4%.

Publicly available real-world datasets come from D.melanogaster (SRR988075),
Human Chromosome 21 (NA19240 Illumina Data Library1), and from a full hu-
man genome data (NA12878 / HG001). For the full human dataset, we concate-
nated the samples from SRR2052337, SRR2052338, SRR2052339, SRR2052342,
SRR2052348, SRR2052352, and SRR2052354, to obtain 30-fold coverage. Table 9.1
gives a summary of the used datasets.

1https://cloudstor.aarnet.edu.au/plus/s/f0f6cb1385704ae8403dfbf86dd622d8/download?
path=%2F&files=Human_NA19240.7z

100 Chapter 9 Evaluation of CAREx

https://cloudstor.aarnet.edu.au/plus/s/f0f6cb1385704ae8403dfbf86dd622d8/download?path=%2F&files=Human_NA19240.7z
https://cloudstor.aarnet.edu.au/plus/s/f0f6cb1385704ae8403dfbf86dd622d8/download?path=%2F&files=Human_NA19240.7z

9.2 Program options

All tools come with a different set of program options and tuning parameters.
Usually, there is no setting that works best on all inputs. For GapFiller we specified
insert size and standard deviation. Konnector2 was run with a k-mer size of 32.
The size of the Bloom filter to represent a De Bruijn graph was set such that
the reported false-positive rate is around 0.3%. CAREx used 48 hash tables with
k-mer size 20. For both Konnector2 and CAREx we set the maximum allowed
pseudo-long read length to insertsize + 4 · stddev, and the minimum length to
max(2 · readlength, insertsize − 4 · stddev). Thus, we did not consider the simple
case of overlapping reads.

9.3 Evaluation on simulated datasets

The quality of produced pseudo-long reads is presented in terms of number of
connected read pairs, number of error-free connections, and error-rate within the
filled gap. In addition, we take a brief look at the quality of outward extensions.

Figure 9.1 presents the percentage of connected read pairs for the different strictness
levels of CAREx, in comparison to the results produced by Konnector2 and GapFiller.
This figure also indicates the number of connected reads whose edit-distance within
the filled gap is either 0 or less than 3.

CAREx achieves a high percentage of connected read pairs with up to 99% connec-
tions for dataset S7 with strictness 0. As expected, using a more conservative mode
(strict mode 1 or 2) decreases the number of successful connections. For strict mode
2, a decrease by around 10% of all pairs can be observed compared to strict mode 0.
The majority of connections produced by CAREx have an edit-distance of 0.

In comparison to the competitors, CAREx produces significantly more pseudo-long
reads. For all simulated datasets, the total number of connected read pairs by other
tools is less than the number of error-free connections produced by our algorithm.
Compared to the other tools, GapFiller is not competitive, connecting only a fraction
of the pairs. In addition, due to the lack of multi-threading capabilities, we were
unable to obtain results for datasets S3, S4, S6, and S7, in reasonable time.

Next, we take a look at the general error-rate of the filled gaps. We define the
error-rate as the sum of edit distances in the gap for all connected pairs divided by
the sum of expected gap sizes for all connected pairs. Despite the fact that CAREx

9.2 Program options 101

S1 S2 S3 S4 S5 S6 S7
0

20

40

60

80

100

Pe
rc

en
t c

on
ne

ct
ed

CAREx strict 0
CAREx strict 1
CAREx strict 2
Konnector2
GapFiller
error-free
<= 2 edits

Fig. 9.1.: Percentage of connected reads for simulated datasets. GapFiller did not finish for
S3, S4, S6, and S7.

produced the most number of error-free gaps for the simulated datasets, Konnector2
has a smaller error-rate than CAREx with strict mode 0 in four out of seven datasets.
On the other hand, error-rates drop significantly when using strict mode 1 and 2
and are better than those of Konnector2. The error-rates for all modes and tools are
presented in Table 9.2.

The computation of edit-distance measures the combined effect of two sources
of errors in the filled gap. First, an extension algorithm may select the wrong
nucleotide to append and thus introduces a substitution error. Second, the algorithm
may produce a pseudo-long read of incorrect total length which leads to indels
compared to the reference genome region. When conducting the experiments, our
assumption was that the reason for inferior error-rates of strict mode 0 compared to
Konnector2 is incorrect pseudo-long read lengths. A first indicator is the immediate
comparison of error-rates of strict mode 1 and 2 to the error-rates of strict mode
0. The major difference of mode 0 to the other modes is that it does not impose

102 Chapter 9 Evaluation of CAREx

Dataset CAREx Konnector2 GapFiller
strict 0 strict 1 strict 2

S1 0.00059 0.00013 0.00006 0.00078 0.00278
S2 0.00081 0.00012 0.00005 0.00063 0.00396
S3 0.00128 0.00009 0.00003 0.00070 DNF
S4 0.00127 0.00010 0.00003 0.00111 DNF
S5 0.00026 0.00006 0.00004 0.00056 0.00371
S6 0.00030 0.00004 0.00002 0.00062 DNF
S7 0.01072 0.00252 0.00151 0.00216 DNF

Tab. 9.2.: Total error rate of filled gaps for simulated reads.

restrictions regarding the length when the extension tasks for both strands produce a
result. In contrast, both strict mode 1 and 2 require both strands to produce a result
of identical length. Since the number of connected read pairs does only decrease
by 10% when using mode 2 instead of mode 0, this means that for the majority of
connected pairs extension tasks succeed on both strands.

A second indicator is given by the distribution of produced pseudo-long read lengths.
Table 9.3 shows the differences between expected pseudo-long read lengths and
observed pseudo-long read lengths for dataset S3. While strict mode 0 produces the
greatest amount of connections of correct length, the variation in lengths is greater
than for Konnector2. Using strict mode 1 or 2 leads to a more defined peak.

∆ CAREx Konnector2
strict 0 strict 1 strict 2

< -4 59,937 5,747 1,431 120
-4 4,558 273 66 2
-3 5,336 453 81 3
-2 9,519 554 173 267
-1 26,207 3,356 1,801 2,258
0 14,098,810 12,838,774 12,591,236 8,763,490
1 23,234 3,148 1,541 1,339
2 8,815 583 156 114
3 4,940 282 76 226
4 3,700 275 113 90

> 4 102,653 6,579 2,308 36,719
Tab. 9.3.: Difference between expected gap size and pseudo-long read gap size for dataset

S3.

To confirm our assumption regarding the impact of length errors on the overall error-
rate, we computed a second set of error-rates that use a modified edit-distance score.
The modified edit-distance is computed by subtracting the absolute length difference
between expected gap size and produced gap size from the original edit-distance.

9.3 Evaluation on simulated datasets 103

Table 9.4 lists the corresponding error rates for the modified edit-distance. In almost
all cases, CAREx has better error-rates. In general, the longer the average insert
size, the more likely it is for CAREx to fail to find the correct length. In addition,
a greater standard deviation, i.e. a large number of possible target lengths, leads
to large discrepancies in produced lengths as in dataset S7. This is because CAREx
always chooses the first possibility to end extension by adding the mate at the end.
Thus, if the length is incorrect, the produced pseudo-long read is more likely too
short rather than too long. However, the total number of those cases is small (98%
of connections by CAREx on S7 have less than 3 edits). Yet, because of the large
insert size deviation, the contributions of those reads to the final error-rate can be
significant. Similar observations apply to Konnector2 as well, though to a lesser
extend.

Dataset CAREx Konnector2 GapFiller
strict 0 strict 1 strict 2

S1 0.00035 0.00009 0.00004 0.00071 0.00270
S2 0.00041 0.00006 0.00003 0.00053 0.00385
S3 0.00045 0.00003 0.00001 0.00041 DNF
S4 0.00042 0.00003 0.00001 0.00082 DNF
S5 0.00015 0.00004 0.00002 0.00051 0.00365
S6 0.00020 0.00002 0.00001 0.00050 DNF
S7 0.00029 0.00005 0.00003 0.00032 DNF

Tab. 9.4.: Total error rate of filled gaps excluding length differences.

Last, we present our observations regarding outward extensions of CAREx. As
explained previously, Konnector2 does not provide a simple way to extract outward
extensions from its generated sequences. Thus, we are not able to compare our
observations to the other tools.

Table 9.5 shows the observed minimum length, average length, and maximum
length, of produced pseudo-long reads for all datasets with strict mode 0. When
averaging the presented values over all seven datasets, the average produced read
length is 1.95 ·(insertsize+4 ·stddev), with a maximum length of 2.67 ·(insertsize+
4 · stddev). With strict mode 2, we observe an average length and maximum length
of 2.03 · (insertsize + 4 · stddev), and 2.62 · (insertsize + 4 · stddev), respectively.

The error-rate of outward extensions, i.e. to the left of the first read and to the right
of the second read, is given in Table 9.6. In direct comparison to the error-rates
within the filled gap (Table 9.2), outward extensions show up to two orders-of-
magnitude more errors. One possible reason for this could be that there is only
a single extension task that produces an outward extension. Thus, there is no

104 Chapter 9 Evaluation of CAREx

Dataset Min Avg Max
S1 280 591 777
S2 460 1148 1441
S3 880 2509 3195
S4 880 2547 3188
S5 462 1161 1433
S6 461 1111 1433
S7 301 1050 2903

Tab. 9.5.: Pseudo-long read lengths when outward extension is enabled. Strict mode 0 was
used.

additional information, i.e. a second task like for filling the gap, that can be used to
detect and reject mistakes in extension.

Dataset Strict 0 Strict 1 Strict 2
S1 0.00243 0.00167 0.00124
S2 0.00325 0.00176 0.00131
S3 0.00499 0.00285 0.00246
S4 0.00455 0.00250 0.00216
S5 0.00112 0.00062 0.00047
S6 0.00128 0.00085 0.00077
S7 0.00377 0.00221 0.00144

Tab. 9.6.: Error-rate of outward extended regions.

9.4 Evaluation on real-world datasets

Two different evaluations are performed with real-world dataset. First, as with simu-
lated reads, the number of connected read pairs and the error-rate in the filled gap
is determined. This is achieved by mapping extended reads to a reference genome.
Second, applicability of extended reads in de-novo assembly is investigated.

For the real-world datasets the program options were modified. Recall that in CAREx
original read positions in the pseudo-long reads are left unmodified. Konnector2,
however, performs error correction on these positions by default. These differences
might impact the mapping process and the assembly. Thus, for our real-world evalu-
ation we disabled the built-in error correction for Konnector2 with the parameter
–preserve-reads. The Bloom filter size was set to 15G, 3G, and 200G, for R1,
R2, and R3, respectively. This results in a reported false-positive rate of 0.26%,
0.29%, and 0.31%, respectively, which is similar to the rate set for simulated datasets.
For dataset R3, the minimum and maximum insert size was set to 300 and 1100,

9.4 Evaluation on real-world datasets 105

respectively. To be able to fit the whole dataset in GPU memory, CAREx used 2-bit
quality scores for dataset R3.

9.4.1 Edit statistics

In a real-world setting no reference positions are known. To be able to determine
the error-rate in the gap, extended reads were aligned to a reference genome using
BWA 0.7.17 [40]. Alignments were filtered with SAMtools [12] to remove secondary
alignments and supplementary alignments which results in at most one alignment
per read. In addition, clipped alignments are not considered for evaluation. In a
clipped alignment, parts of the read could not be aligned. Positions of the filled gaps
were subsequently extracted from the alignments and compared to the reference
genome to compute the edit distance. Note that since only edits within the filled gaps
should be considered, the total edit distance reported by BWA cannot be used.

R1 R2 R3
0

20

40

60

80

Pe
rc

en
t c

on
ne

ct
ed

0.0103

0.0088
0.0085

0.0068

0.0106

0.0029

0.0020

0.0018

0.0023

0.0053

0.0020

0.0013
0.0012

0.0015

0.0000

CAREx strict 0
CAREx strict 1
CAREx strict 2
Konnector2
GapFiller
error-free
<= 2 edits

Fig. 9.2.: Percentage of connected read pairs of real-world datasets. Error-rate is given at
the top of each bar.

106 Chapter 9 Evaluation of CAREx

Figure 9.2 shows the percentage of connected read pairs and the corresponding
fraction of edit-free filled gaps, as well as the fraction of filled gaps with edit-distance
≤ 2. Additionally, the error-rate is reported, as well. Neither Konnector2 nor CAREx
were run with enabled outward extension. CAREx produced the most connected
read pairs and the highest amount of error-free connections on all three datasets. In
terms of error-rate, results of Konnector2 are better than CAREx with strict mode 0
because the fraction of pseudo-long reads with more than two errors is smaller. This
is especially true for dataset R1 where the error-rate of CAREx remains greater than
Konnector2’s regardless of the selected strictness. Still, more restrictive extension
leads to a decrease in error-rate, and reaches better values compared to Konnector2
on R2 and R3. Note that edits may also be caused from genomic variations, for
example single nucleotide polymorphisms (SNPs), compared to the used reference
genome. Thus, the actual number of wrong nucleotides, for all tools, may be
different. As with simulated reads, the results of GapFiller are not competitive. We
did not attempt the extension of dataset R3 with GapFiller.

9.4.2 De-novo assembly

De novo assembly was performed with SPAdes v3.13.1 and analyzed with QUAST
v5.0.2. For our use-case SPAdes provides three options to specify its input files:
single-end reads (parameter -s), paired-end reads (parameter --12), or merged
reads (parameter --merged). Finding the best evaluation approach is difficult
since there are many possible combinations of settings and used input files. Both
Konnector2 and CAREx produce two sets of reads, pseudo-long reads and remaining
reads. Should the extended reads be used as merged reads or single-end reads?
Should remaining reads be used as single-end reads or paired-end reads? Should
they be used at all?

The choice of parameters is further complicated when considering outward exten-
sions. When outward extension is enabled, output files consisting of unextended
reads are used differently by CAREx and Konnector2. If a read pair in CAREx could
not be extended, both reads are written to the file of unextended reads. This pro-
duces a paired-end file of unextended reads. In Konnector2 with enabled outward
extension, read pairs that could not be processed are split into two single-end reads
that are subsequently extended on both ends individually. Only those single-end
reads that could not be elongated in this second step are written to the left-over file.
Thus, this produces a single-end file.

9.4 Evaluation on real-world datasets 107

The third complication is that there are different metrics that can be utilized to
compare assemblies. For example, should one prefer assemblies with less contigs, or
with longer contigs, or with lower error-rate?

For this evaluation, two different sets of assemblies were produced without consider-
ing outward-extension. In the first set, extended reads were specified as single-end
reads, and remaining reads as paired-end reads. In the second set, extended reads
were instead specified as merged reads. For assembly metrics, we compared the
number of large contigs (≥ 50, 000 bp), the N50 value, and the number of misassem-
blies as well as the total error-rate. Only Konnector2 and CAREx were considered.
GapFiller was excluded because of the previously shown sub-optimal results. The
assembly of R3 was not attempted.

R1
CAREx Konnector2

strict 0 strict 1 strict 2
contigs ≥ 50,000 667 660 664 659
N50 99,411 105,136 94,000 110,321
misassembled contigs 837 764 769 712
misassembled contigs length 54,708,668 56,368,222 54,994,098 62,233,531
mismatches per 100 kbp 527.4 526.21 523.09 517.58

R2
CAREx Konnector2

strict 0 strict 1 strict 2
contigs ≥ 50,000 133 105 69 72
N50 30,903 27,414 23,492 21,506
misassembled contigs 100 133 197 255
misassembled contigs length 2,971,527 4,253,862 5,136,136 6,069,175
mismatches per 100 kbp 160.85 163.97 164.33 168.76

Tab. 9.7.: A selection of assembly metrics reported by Quast for real datasets R1 and R2
using the -s parameter for extended reads.

Table 9.7 shows the selected metrics for the first set of assemblies. On R1, Konnector2
has the greatest N50 value and the smallest number of misassembled contigs as well
as the smallest error-rate. CAREx produces more longer contigs and has a smaller
total length of misassembled contigs. Since CAREx has more misassemblies but a
smaller total misassembled length compared to Konnector2, misassembled contigs
for CAREx are shorter than for Konnector2. On R2, CAREx is superior in all five
metrics.

Analysis of the second set of assemblies is presented in Table 9.8. Here, Konnector2
achieves a slightly greater N50 value on R1, but is inferior to CAREx in the other
metrics, and on R2.

108 Chapter 9 Evaluation of CAREx

R1
CAREx Konnector2

strict 0 strict 1 strict 2
contigs ≥ 50,000 670 629 650 633
N50 96,480 114,381 107.806 115.631
misassembled contigs 626 608 638 648
misassembled contigs length 54,227,737 58,604,328 58,014,861 61,500,357
mismatches per 100 kbp 511.03 511.81 511.98 514.07

R2
CAREx Konnector2

strict 0 strict 1 strict 2
contigs ≥ 50,000 44 28 23 16
N50 17,903 16,500 15,384 13,686
misassembled contigs 195 293 327 474
misassembled contigs length 3,898,745 5,524,109 5,414,538 6,890,369
mismatches per 100 kbp 154.06 155.72 156.91 167.1

Tab. 9.8.: A selection of assembly metrics reported by Quast for real datasets R1 and R2
using the –merged parameter for extended reads.

Comparing the different levels of strictness of CAREx, one can see that for R2
the assembly quality decreases with increasing level of strictness for both sets of
assemblies, which seems counter-intuitive as the extension error-rate is the greatest
for strictness 0. This observation could be explained by the number of produced
error-free pseudo-long reads. Although strict mode 0 has a greater error-rate in the
connected gap, overall it produces the most error-free connections. For R1, things
are not so clear since the assembly quality behaves differently than on R2. This may
be caused by the fraction of extended reads with more than two errors which is
significantly greater than for R2 (see the unmarked bar areas in Figure 9.2).

To summarize, assemblies produced from reads extended with CAREx are better
than those produced with reads from Konnector2 in 17 out of the 20 presented
values. However, there is no clear combination of extension strictness and assembly
parameters that produces the best values for all five metrics.

9.5 Impact of sequencing errors

In CAREx, sequencing errors in reads may lead to less accurate extensions. The
reasons are two-fold. On one hand, erroneous nucleotides can lead to a different
consensus sequence in MSAs. On the other hand, the number of candidates may
decrease. This is because an erroneous k-mer may contribute to its read’s minhash

9.5 Impact of sequencing errors 109

signature. To evaluate the effect of sequencing errors, we used our error corrector
CARE to produce corrected versions of all datasets prior to extension, and computed
the edit statistics for those extended corrected versions. Additionally, we extended
error-free versions of the simulated datasets to obtain an optimal baseline for
extension.

Since the overall impact of error correction is small, we will only give a brief summary
of our finding. Table 9.9 lists the average improvements over all standard erroneous
datasets. In terms of number of (error-free) connected reads, error correction has
similar impact on both simulated datasets and real-world datasets. Error-correction
is more beneficial for strict mode 1 and 2 because they require equality of the
produced connections on both strands.

CAREx
strict 0 strict 1 strict 2

Simulated
Number of connected reads (corrected version) 0.84% 2.69% 3.00%
Number of connected reads (error-free version) 0.82% 3.28% 3.75%
Number of error-free gaps (corrected version) 0.03% 2.74% 3.03%
Number of error-free gaps (error-free version) 0.24% 3.40% 3.81%

Real
Number of connected reads (corrected version) 0.71% 3.07% 3.52%
Number of error-free gaps (corrected version) 0.63% 2.86% 3.24%

Tab. 9.9.: Average improvement of extension quality for corrected datasets over the original
datasets.

9.6 Performance

The performance benchmarks of CAREx were conducted on the following system:

M3 (Single-GPU workstation): AMD EPYC 7713P 64-core CPU, 512 GB DDR4
RAM, NVIDIA A100 PCIe GPU with 80 GB HBM2e memory, CUDA Toolkit 11.8

Total program runtime and peak memory consumption for read extension of datasets
S2, S3, S4, and R3 are presented in Table 9.10, showing the scaling of runtime with
different insert sizes and number of reads. CAREx was run with a memory limit of
200 GB. 48 hash tables were used. CAREx GPU with CPU tables used 20 threads for
hashing on the CPU and 2 threads for read extension on the GPU. Strict mode 1 was
used. Both tools were run with disabled outward-extension.

110 Chapter 9 Evaluation of CAREx

On the simulated datasets Konnector2 is the fastest of the CPU-based tools. CAREx
(CPU) is up to three times slower. GapFiller does not provide an option for multi-
threading which results in a much longer processing time compared to Konnector2
and CAREx (CPU). On real-world dataset R3, CAREx (CPU) is faster than Konnector2.
The GPU-accelerated versions of CAREx are significantly faster than the CPU-based
tools. Our GPU-based implementation is around seven times faster than our CPU
version, allowing for the processing of 600M Human reads of length 148 in a few
hours instead of a day. The choice of extension strictness only has little impact on the
runtime of CAREx. Using strict mode 0 gives a slightly better performance of around
3% because the comparison of results of different strands is not performed.

Our peak memory usage is reached during hash table construction, when all key-
value pairs of all tables are materialized before compacting them into buckets.
If the memory limit prohibits the construction of all tables at once, tables are
created in batches to reduce the memory consumption which in turn leads to slightly
increased construction times. For example, if a memory limit of 480 GB is set for
R3, construction times decreases by 9 minutes and 1 minute for (CPU) and (GPU,
CPU tables), respectively. The peak memory usage in this case is around 380 GB.
However, these gains in runtime are negligible compared to the total runtime.

S2 Threads Runtime [minutes] Memory [GB]
CAREx (CPU) 64 43 21
CAREx (GPU, CPU tables) 2+20 8 21 (8)
CAREx (GPU, GPU tables) 2 6 7 (37)
GapFiller 1 3855 4
Konnector2 64 24 11
S3 Threads Runtime [minutes] Memory [GB]
CAREx (CPU) 64 99 21
CAREx (GPU, CPU tables) 2+20 19 21 (8)
CAREx (GPU, GPU tables) 2 14 7 (37)
Konnector2 64 62 11
S4 Threads Runtime [minutes] Memory [GB]
CAREx (CPU) 64 365 42
CAREx (GPU, CPU tables) 2+20 44 40 (14)
CAREx (GPU, GPU tables) 2 38 14 (72)
Konnector2 64 126 11
R3 Threads Runtime [hours:minutes] Memory [GB]
CAREx (CPU) 64 23:18 196
CAREx (GPU, CPU tables) 2+20 3:20 187 (63)
Konnector2 64 27:43 201

Tab. 9.10.: Total program runtime and CPU (GPU) peak memory consumption in GB for
the datasets S2, S3, S4, and R3.

9.6 Performance 111

Last, we investigated the effect of running CAREx with a reduced number of hash
tables with respect to performance and quality of results for dataset R3. Figure
9.3 shows the runtime of CAREx GPU with CPU tables with different numbers of
hash tables, and the corresponding amount of produced error-free connections
between reads. Similar to the observations made for the error corrector CARE, the
number of error-free gaps increases with more hash tables. However, one can also
see diminishing returns for greater number of hash tables especially when taking
the runtime into account. Achieving the best results requires large computational
resources in terms of both processing time and available memory for hash tables.

Fig. 9.3.: Runtime and number of error-free connected reads of R3 depending on the
number of hash tables.

The current implementation of CAREx does not have proper multi-GPU support. It
should scale with the number of GPUs in a similar manner than CARE as it shares
many similar components. We assume that CAREx is able to achieve a greater
multi-GPU efficiency than CARE with respect to the total program runtime. This is
because a sorting step after the extension phase is not mandatory. If no sorted output
is requested, results are written to file immediately, concurrently to the ongoing
extension phase. This leads to a reduction of sections with serial program execution
and thus allows for greater theoretically achievable speedup.

112 Chapter 9 Evaluation of CAREx

CAREx Conclusion 10
We presented CAREx, a software for the computation of pseudo-long reads from
paired-end NGS reads. While the task may be trivial for two overlapping reads, it
poses a computational challenge if the insert size is greater than twice the read
length. Our MSA-based approach to a targeted local assembly is able to reliably
produce such pseudo-long reads for the latter case. In direct comparison to other
software, CAREx connects a larger fraction of the input reads. The majority of
generated pseudo-long reads is error-free, and their numbers can exceed the total
number of connected reads produced by competitors. As can be seen from the
results, when a dataset has a large variation in insert size a large fraction of edits is
caused by incorrect pseudo-long read lengths. To further improve CAREx, we would
need to identify those cases during computation, and either handle them differently,
or discard their extension entirely. One possible approach to identification would be
to first extend all read pairs to maximum insert size, and then determine whether
there are multiple possible positions where the mate could be placed. An important
part of CAREx is its efficient parallelization to achieve fast runtimes. It is able to
utilize both CPU-sided multi-threading and GPU-enabled acceleration. With full
GPU parallelization on a single A100 GPU, CAREx is up to 8 times faster than its
competitors.

In the future, we may investigate the use of machine learning techniques such as
random forests or deep neural networks. These could improve the selection of
nucleotides to append based on the constructed MSA. Similar approaches have
been demonstrated to improve the accuracy of variant calling [3]. Other potential
research areas involve the use of different types of input datasets. For single-end data
one could use two extension tasks instead of four, performing outward-extension
beginning at the ends of the read. To support long-read platforms such as PacBio or
Oxford Nanopore with their different error models compared to NGS reads, both
pair-wise alignments and multiple-sequence alignments need to consider indels.
Thus, full semi-global alignments would be required instead of a simple shifted
hamming distance. In addition to alignments, hash tables would need to be revised
as well. Long-reads would require multi-stage hashing where a long read is split
into shorter sections (windows) that are hashed separately. Candidate reads then
not only need to have windows with the same hash value as the anchor, but the

113

corresponding windows also need to be in consistent relative order. The last type of
data which may be interesting is metagenomic data. This would require additional
preprocessing to separate input reads by species.

114 Chapter 10 CAREx Conclusion

Part III

Conclusion

Future work 11
Bioinformatics is a wide field of research. While our general building blocks have
been tailored towards our needs for error correction and read extension, they could
prove useful in other applications that process sequence data, for example in read
mapping. First experiments indicate that our hash tables and alignments can be
used to identify exact matches of short NGS reads within a reference genome.
Preliminary results show fast execution times on a single GPU for large datasets.
It will be interesting to see if we can convert this approach into a fully-functional,
GPU-accelerated read mapper.

CARE and CAREx target short NGS reads but their underlying ideas could also be
adapted to long third-generation sequencing reads. This would require modifications
in all building blocks: Data layout, hashing, and alignments. 1. TGS reads have a
larger variation in sequence length. Our current approach of padding all sequences
to the maximum length would no longer be viable. Instead, we would need to store
sequence without padding and use an additional list of offsets to determine the
location of reads within the sequence array. The same applies to quality scores. 2. It
is less likely that two long sequences which share a few common k-mers are similar.
To identify potentially similar reads, our hashing approach needs to consider hash
signatures obtained from multiple, shorter sections of the reads. 3. Pair-wise shifted
hamming distance alignments would need to be replaced with slower semi-global
alignments. The NVIDIA Hopper GPU architecture introduced DPX instructions that
provide hardware-acceleration for common computations in dynamic programming
algorithms. These instructions could be utilized for faster semi-global alignments.
The construction of multiple-sequence alignments with gaps is more involved since
different pair-wise alignments could introduce gaps at different positions within
the anchor sequence. Another aspect is the number of reads per dataset. With a
fixed dataset coverage, TGS datasets contain less reads than NGS datasets. This may
lead to MSAs with a reduced number of rows and would require re-evaluating our
thresholds for consensus identification.

Our current implementations of CARE and CAREx already provide good performance.
Yet, we see potential for improvement.

117

In our GPU minhasher, after hash tables have been queried we need to find the
set of distinct values per segment which involves sorting of segments of irregular
size. The involved sorting and compaction takes at least 20% of the time to find the
candidate read ids for a batch of anchor reads. Sorting is a widely used primitive in
computer science with ongoing efforts to find faster sorting methods. Recent work
[37] suggests the use of bitonic sorting networks and achieves a greater performance
than CUB’s segmented sort on a wide range of segment sizes. This approach could
also be helpful in our use-case.

Another topic is the handling of compressed files. We have seen that the sequence file
parsing performance is limited by compute-intensive decompression. The reading
and writing of compressed files in CARE and CAREx are based on zlib’s gzRead
and gzWrite functions, which are single-threaded. While there exists stand-alone
software for multi-threaded gzip compression1 and decompression2, their usage
before and after our programs would require creating intermediate decompressed
files. If we were able to integrate multi-threaded gzip processing directly into our
software, similar to RabbitQCPlus2.0, we could provide faster file accesses and
reduce disk space usage. In addition to multi-threading, GPU-accelerated sequence
file parsing would be beneficial for both compressed and uncompressed files.

Lastly, we may add multi-GPU support to CAREx.

1https://zlib.net/pigz/
2https://github.com/Piezoid/pugz

118 Chapter 11 Future work

Conclusion 12
Error-correction and read extension are an important step in many sequence pro-
cessing pipelines. In this thesis, we presented two GPU-accelerated applications
for those problems, CARE and CAREx, which deliver both a high performance and
accurate results and target Illumina NGS reads.

In order to achieve their high accuracy both tools access the full information con-
tained in sequences by constructing multiple-sequence alignments (MSAs) of similar
reads to make context-aware decisions. This is in contrast to k-mer-based approaches
which operate on individual k-mers in isolation, without considering the surround-
ing positions. To avoid the computational complexity of computing all pair-wise
alignments of all reads in a dataset, we developed a minhashing-based index datas-
tructure. After the index is created for a dataset, it can be queried to identify subsets
of similar reads. Furthermore, an efficient alignment computation was employed
which takes advantage of the properties of the targeted sequencing technology.
NGS reads are dominated by substitution errors. This observation is exploited by
our developed bit-parallel shifted-hamming-distance alignment that only considers
mismatches but not indels. Combined, the index datastructure and the fast pair-wise
alignments provide the means for the quick construction of MSAs, a great tool for
error correction and read extension. To alleviate computational bottlenecks found in
traditional CPU-based applications and to be able to cope with the ever increasing
amount of sequencing data, both algorithms are designed for the execution on CUDA-
enabled GPUs. While this comes with new challenges in regards of programming, it
leads to significantly faster execution times.

Using the MSAs, CARE produces significantly less false-positive corrections than
other state-of-the-art software on both real-world datasets and simulated datasets.
The number of false positives can be further reduced by employing a Random
Forest classifier to make per-base decisions about the incorporation of the MSA
consensus nucleotide into the corrected sequence. Our results show that for a
Human dataset with 30-fold coverage, CARE is able to remove 90% of sequencing
errors in 22 minutes on a modern GPU server using a single NVIDIA A100 GPU. By
using multiple GPUs, the runtimes can be further reduced to under ten minutes.
CARE achieves a remarkable false-positive rate of 1, 500 per one million corrections

119

using the Random Forest. Without Random Forest, CARE corrects 86% of all errors,
with a false-positive rate of 1, 800. The competitors, which are exclusively CPU-based
programs, fall short in at least one of: percentage of corrected errors, false-positive
rate, and runtime. For example, BFC correctly identifies 92% of the errors in 90
minutes with 13 times more false-positive corrections than CARE with Random Forest.
Karect produces the second-fewest false-positives which are still 3.5 times larger than
CARE’s, achieves only 82% corrections and takes several days to complete on our
machine. Lighter is the fastest tool, taking only 45 minutes. However, it produces the
greatest false-positive rate (74, 000 per million corrections) and handles only 79% of
all errors. In the performance evaluation of CARE, we found that file accesses can
limit the performance. Those cannot be easily improved via parallelization since the
total transfer rate between storage device and RAM is limited. In our benchmarks,
we observed runtime improvements of up to 30% when using a PCIe SSD instead of a
HDD. The IO limitations can become even more prominent when multiple GPUs are
used. The fraction of IO in the total execution time is expected to increase further
with faster GPUs.

CAREx utilizes the MSAs to compute more error-free connections of read pairs
than its competitors. The GPU-accelerated version of CAREx takes 3.3 hours on
an A100 GPU to process a Human dataset with 30-fold coverage. Our algorithm is
able to connect between 50% and 60% of all read pairs without errors. In contrast,
Konnector2 achieves only 35% error-free connected read pairs with a runtime of 27.5
hours. The quality of our results depend on the level of strictness when comparing
temporary results produced on different strands. More strict extension leads to
an increased accuracy, but reduces the overall number of generated pseudo-long
read.

Although GPU-acceleration yields superior runtimes, both CARE and CAREx offer
CPU-based code paths at reduced speeds. Thus, both programs are also able to
deliver the same accurate results on work-stations that are not equipped with a
CUDA-enabled GPU. This makes them widely usable. On a 64-core CPU, the CPU
variants of CARE and CAREx are around 4 − 8 times slower than the respective GPU
variants on a single A100 GPU.

To allow simple access to our software, and to enable other interested researchers to
use and improve our findings, CARE and CAREx are licensed under GNU General
Public License v3 and are publicly available on Github under https://github.com/
fkallen/CARE and https://github.com/fkallen/CAREx.

120 Chapter 12 Conclusion

https://github.com/fkallen/CARE
https://github.com/fkallen/CARE
https://github.com/fkallen/CAREx

Bibliography

[1]US DOE Joint Genome Institute: Hawkins Trevor 4 Branscomb Elbert 4 Predki Paul
4 Richardson Paul 4 Wenning Sarah 4 Slezak Tom 4 Doggett Norman 4 Cheng
Jan-Fang 4 Olsen Anne 4 Lucas Susan 4 Elkin Christopher 4 Uberbacher Edward 4
Frazier Marvin 4, RIKEN Genomic Sciences Center: Sakaki Yoshiyuki 9 Fujiyama Asao
9 Hattori Masahira 9 Yada Tetsushi 9 Toyoda Atsushi 9 Itoh Takehiko 9 Kawagoe
Chiharu 9 Watanabe Hidemi 9 Totoki Yasushi 9 Taylor Todd 9, Genoscope, et al.
“Initial sequencing and analysis of the human genome”. In: nature 409.6822 (2001),
pp. 860–921 (cit. on p. 1).

[2]Amin Allam, Panos Kalnis, and Victor Solovyev. “Karect: accurate correction of
substitution, insertion and deletion errors for next-generation sequencing data”. In:
Bioinf. 31.21 (2015) (cit. on pp. 17, 26).

[3]Gunjan Baid, Daniel E Cook, Kishwar Shafin, et al. “DeepConsensus improves the
accuracy of sequences with a gap-aware sequence transformer”. In: Nature Biotech-
nology (2022), pp. 1–7 (cit. on p. 113).

[4]Anton Bankevich, Sergey Nurk, Dmitry Antipov, et al. “SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing”. In: J. Comput. Biol.
19.5 (2012) (cit. on pp. 17, 60).

[5]David R. Bentley, Shankar Balasubramanian, Harold P. Swerdlow, et al. “Accurate
whole human genome sequencing using reversible terminator chemistry”. In: Nature
456.7218 (Nov. 2008), pp. 53–59 (cit. on p. 29).

[6]K Berlin, Sergey Koren, Chen-Shan Chin, et al. “Assembling large genomes with
single-molecule sequencing and locality-sensitive hashing”. In: Nat Biotech 33 (2015)
(cit. on p. 19).

[7]Marten Boetzer and Walter Pirovano. “Toward almost closed genomes with GapFiller”.
In: Genome Biology 13.6 (June 2012), R56 (cit. on p. 90).

[8]Paola Bonizzoni and Gianluca Della Vedova. “The complexity of multiple sequence
alignment with SP-score that is a metric”. In: Theoretical Computer Science 259.1
(2001), pp. 63–79 (cit. on p. 10).

[9]Andrei Z Broder. “Identifying and filtering near-duplicate documents”. In: Annual
Symposium on Combinatorial Pattern Matching. Springer. 2000 (cit. on p. 19).

[10]Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, et al. “Phased diploid genome
assembly with single-molecule real-time sequencing”. In: Nature methods 13.12
(2016), pp. 1050–1054 (cit. on p. 18).

121

[11]Francis S Collins, Eric D Green, Alan E Guttmacher, Mark S Guyer, and US National
Human Genome Research Institute. “A vision for the future of genomics research”.
In: nature 422.6934 (2003), pp. 835–847 (cit. on p. 1).

[12]Petr Danecek, James K Bonfield, Jennifer Liddle, et al. “Twelve years of SAMtools and
BCFtools”. In: GigaScience 10.2 (Feb. 2021). giab008. eprint: https://academic.
oup.com/gigascience/article- pdf/10/2/giab008/36332246/giab008.pdf
(cit. on p. 106).

[13]Maciej Długosz and Sebastian Deorowicz. “RECKONER: read error corrector based
on KMC”. In: Bioinf. 33.7 (2017) (cit. on pp. 17, 25).

[14]Dent Earl, Keith Bradnam, John St. John, et al. “Assemblathon 1: A competitive
assessment of de novo short read assembly methods”. In: Genome Res. 21 (2011)
(cit. on p. 60).

[15]B Ewing, L Hillier, M C Wendl, and P Green. “Base-calling of automated sequencer
traces using phred. I. Accuracy assessment”. en. In: Genome Res 8.3 (Mar. 1998),
pp. 175–185 (cit. on p. 5).

[16]Irena Fischer-Hwang, Idoia Ochoa, Tsachy Weissman, et al. “Denoising of Aligned
Genomic Data”. In: Scientific reports 9.1 (2019) (cit. on p. 23).

[17]Paul Greenfield, Konsta Duesing, Alexie Papanicolaou, et al. “Blue: correcting se-
quencing errors using consensus and context”. In: Bioinf. 30.19 (2014) (cit. on pp. 17,
25).

[18]Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, et al. “QUAST: quality assess-
ment tool for genome assemblies”. In: Bioinf. 29.8 (2013) (cit. on p. 60).

[19]Dan Gusfield. “Algorithms on stings, trees, and sequences: Computer science and
computational biology”. In: Acm Sigact News 28.4 (1997) (cit. on p. 10).

[20]Yun Heo, Anand Ramachandran, Wen-Mei Hwu, et al. “BLESS 2: accurate, memory-
efficient and fast error correction method”. In: Bioinf. 32.15 (2016) (cit. on pp. 17,
25).

[21]Mahdi Heydari, Giles Miclotte, Piet Demeester, et al. “Evaluation of the impact of
Illumina error correction tools on de novo genome assembly”. In: BMC Bioinform.
18.1 (2017) (cit. on p. 23).

[22]Mahdi Heydari, Giles Miclotte, Yves Van de Peer, et al. “Illumina error correction
near highly repetitive DNA regions improves de novo genome assembly”. In: BMC
Bioinform. 20.1 (2019) (cit. on p. 26).

[23]Weichun Huang, Leping Li, Jason R Myers, et al. “ART: a next-generation sequencing
read simulator”. In: Bioinf. 28.4 (2012) (cit. on p. 49).

[24]Che-Lun Hung, Yu-Shiang Lin, Chun-Yuan Lin, Yeh-Ching Chung, and Yi-Fang Chung.
“CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence
alignment on Multi-GPUs”. In: Computational Biology and Chemistry 58 (Oct. 2015),
pp. 62–68 (cit. on p. 20).

122 Bibliography

https://academic.oup.com/gigascience/article-pdf/10/2/giab008/36332246/giab008.pdf
https://academic.oup.com/gigascience/article-pdf/10/2/giab008/36332246/giab008.pdf

[25]L Ilie and M Molnar. “RACER: Rapid and accurate correction of errors in reads”. In:
Bioinf. 29.19 (2013) (cit. on pp. 17, 25).

[26]Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. “HiTEC: accurate error correction in
high-throughput sequencing data”. en. In: Bioinformatics 27.3 (Nov. 2010), pp. 295–
302 (cit. on p. 17).

[28]Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, et al. “ABySS 2.0:
resource-efficient assembly of large genomes using a Bloom filter”. en. In: Genome
Res 27.5 (Feb. 2017), pp. 768–777 (cit. on p. 90).

[29]Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. “DNABERT: pre-trained
Bidirectional Encoder Representations from Transformers model for DNA-language
in genome”. In: Bioinformatics 37.15 (Feb. 2021), pp. 2112–2120. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/37/15/2112/50927437/
btab083.pdf (cit. on p. 18).

[30]John Jumper, Richard Evans, Alexander Pritzel, et al. “Highly accurate protein
structure prediction with AlphaFold”. In: Nature 596.7873 (July 2021), pp. 583–589
(cit. on p. 18).

[32]Daniel Jünger, Robin Kobus, André Müller, et al. “WarpCore: A Library for fast Hash
Tables on GPUs”. In: HiPC 2020. IEEE, 2020, pp. 11–20 (cit. on p. 39).

[33]Felix Kallenborn, Julian Cascitti, and Bertil Schmidt. “CARE 2.0: reducing false-
positive sequencing error corrections using machine learning”. In: BMC Bioinformatics
23.1 (June 2022) (cit. on p. 3).

[34]Felix Kallenborn, Andreas Hildebrandt, and Bertil Schmidt. “CARE: context-aware
sequencing read error correction”. In: Bioinformatics 37.7 (Aug. 2020), pp. 889–895
(cit. on p. 3).

[35]Wei-Chun Kao, Andrew H Chan, and Yun S Song. “ECHO: a reference-free short-read
error correction algorithm”. In: Genome research 21.7 (2011) (cit. on pp. 17, 26).

[36]Robin Kobus, André Müller, Daniel Jünger, Christian Hundt, and Bertil Schmidt.
“MetaCache-GPU: ultra-fast metagenomic classification”. In: Proceedings of the 50th
International Conference on Parallel Processing. 2021, pp. 1–11 (cit. on p. 20).

[37]Robin Kobus, Johannes Nelgen, Valentin Henkys, and Bertil Schmidt. “Faster Seg-
mented Sort on GPUs”. In: Euro-Par 2023: Parallel Processing. Ed. by José Cano,
Marios D. Dikaiakos, George A. Papadopoulos, Miquel Pericàs, and Rizos Sakellariou.
Cham: Springer Nature Switzerland, 2023, pp. 664–678 (cit. on p. 118).

[38]David Laehnemann, Arndt Borkhardt, and Alice Carolyn McHardy. “Denoising DNA
deep sequencing data—high-throughput sequencing errors and their correction”. In:
Briefings in bioinformatics 17.1 (2016), pp. 154–179 (cit. on p. 17).

[39]H Li. “BFC: correcting Illumina sequencing errors”. In: Bioinf. 31.17 (Sept. 2015)
(cit. on pp. 17, 25).

Bibliography 123

https://academic.oup.com/bioinformatics/article-pdf/37/15/2112/50927437/btab083.pdf
https://academic.oup.com/bioinformatics/article-pdf/37/15/2112/50927437/btab083.pdf
https://academic.oup.com/bioinformatics/article-pdf/37/15/2112/50927437/btab083.pdf

[40]Heng Li and Richard Durbin. “Fast and accurate short read alignment with Bur-
rows–Wheeler transform”. In: Bioinformatics 25.14 (May 2009), pp. 1754–1760.
eprint: https://academic.oup.com/bioinformatics/article-pdf/25/14/1754/
605544/btp324.pdf (cit. on p. 106).

[41]Qing Li, Weidong Cai, Xiaogang Wang, et al. “Medical image classification with
convolutional neural network”. In: 2014 13th International Conference on Control
Automation Robotics and Vision (ICARCV). IEEE, Dec. 2014 (cit. on p. 18).

[42]A Limasset, JF Flot, and P Peterlongo. “Toward perfect reads: self-correction of short
reads via mapping on de Bruijn graphs.” In: Bioinf. (2019) (cit. on pp. 17, 26).

[43]Binghang Liu, Jianying Yuan, Siu-Ming Yiu, et al. “COPE: an accurate k-mer-based
pair-end reads connection tool to facilitate genome assembly”. In: Bioinformat-
ics 28.22 (Oct. 2012), pp. 2870–2874. eprint: https : / / academic . oup . com /
bioinformatics/article-pdf/28/22/2870/671354/bts563.pdf (cit. on p. 90).

[44]Chi-Man Liu, Thomas Wong, Edward Wu, et al. “SOAP3: ultra-fast GPU-based parallel
alignment tool for short reads”. In: Bioinformatics 28.6 (2012), pp. 878–879 (cit. on
p. 20).

[45]Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig. “GPU-ClustalW:
Using graphics hardware to accelerate multiple sequence alignment”. In: High Per-
formance Computing-HiPC 2006: 13th International Conference, Bangalore, India,
December 18-21, 2006. Proceedings 13. Springer. 2006, pp. 363–374 (cit. on p. 20).

[46]Y Liu, J Schröder, and B Schmidt. “Musket: a multistage k-mer spectrum-based error
corrector for Illumina sequence data”. In: Bioinf. 29.3 (2013) (cit. on pp. 17, 25).

[47]Yongchao Liu and Bertil Schmidt. “CUSHAW2-GPU: empowering faster gapped short-
read alignment using GPU computing”. In: IEEE Design & Test 31.1 (2013), pp. 31–39
(cit. on p. 20).

[48]Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. “DecGPU: distributed error
correction on massively parallel graphics processing units using CUDA and MPI”. In:
BMC Bioinformatics 12.1 (Mar. 2011), p. 85 (cit. on p. 17).

[49]Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. “CUDASW++ 3.0: acceler-
ating Smith-Waterman protein database search by coupling CPU and GPU SIMD
instructions”. In: BMC bioinformatics 14 (2013), pp. 1–10 (cit. on p. 20).

[50]Ruibang Luo, Binghang Liu, Yinlong Xie, et al. “SOAPdenovo2: an empirically im-
proved memory-efficient short-read de novo assembler”. In: GigaScience 1.1 (Dec.
2012). 2047-217X-1-18. eprint: https : / / academic . oup . com / gigascience /
article-pdf/1/1/2047-217X-1-18/25510880/13742_2012_article_18.pdf
(cit. on pp. 17, 90).

[51]Tanja Magoč and Steven L. Salzberg. “FLASH: fast length adjustment of short reads to
improve genome assemblies”. In: Bioinformatics 27.21 (Sept. 2011), pp. 2957–2963.
eprint: https://academic.oup.com/bioinformatics/article-pdf/27/21/2957/
576912/btr507.pdf (cit. on p. 90).

124 Bibliography

https://academic.oup.com/bioinformatics/article-pdf/25/14/1754/605544/btp324.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/14/1754/605544/btp324.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/22/2870/671354/bts563.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/22/2870/671354/bts563.pdf
https://academic.oup.com/gigascience/article-pdf/1/1/2047-217X-1-18/25510880/13742_2012_article_18.pdf
https://academic.oup.com/gigascience/article-pdf/1/1/2047-217X-1-18/25510880/13742_2012_article_18.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/21/2957/576912/btr507.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/21/2957/576912/btr507.pdf

[52]Medhat Mahmoud, Nastassia Gobet, Diana Ivette Cruz-Dávalos, et al. “Structural
variant calling: the long and the short of it”. In: Genome biology 20.1 (2019), pp. 1–14
(cit. on p. 19).

[53]Guillaume Marcais and Carl Kingsford. “A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers”. In: Bioinf. 27.6 (2011) (cit. on p. 59).

[54]André Müller, Christian Hundt, Andreas Hildebrandt, et al. “MetaCache: context-
aware classification of metagenomic reads using minhashing”. In: Bioinf. 33.23 (2017)
(cit. on p. 19).

[55]Francesca Nadalin, Francesco Vezzi, and Alberto Policriti. “GapFiller: a de novo
assembly approach to fill the gap within paired reads”. In: BMC Bioinformatics 13.14
(Sept. 2012), S8 (cit. on pp. 19, 90).

[58]B D Ondov, Todd J. Treangen, Páll Melsted, et al. “Mash: fast genome and metagenome
distance estimation using MinHash”. In: Genome Biology 17:132 (2016) (cit. on
p. 19).

[59]F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on
p. 45).

[60]Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. “An Eulerian path approach
to DNA fragment assembly”. In: Proceedings of the National Academy of Sciences 98.17
(Aug. 2001), pp. 9748–9753 (cit. on p. 17).

[61]V Popic and S Batzoglou. “Privacy-Preserving Read Mapping Using Locality Sensitive
Hashing and Secure Kmer Voting”. In: bioRxiv (2016) (cit. on p. 19).

[62]Ryan Poplin, Pi-Chuan Chang, David Alexander, et al. “A universal SNP and small-
indel variant caller using deep neural networks”. In: Nature Biotechnology 36.10
(Sept. 2018), pp. 983–987 (cit. on p. 20).

[63]Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A
Yorke. “Reducing storage requirements for biological sequence comparison”. In:
Bioinformatics 20.18 (2004), pp. 3363–3369 (cit. on p. 19).

[64]Leena Salmela and Eric Rivals. “LoRDEC: accurate and efficient long read error
correction”. In: Bioinformatics 30.24 (2014), pp. 3506–3514 (cit. on p. 17).

[65]Leena Salmela and Jan Schröder. “Correcting errors in short reads by multiple
alignments”. In: Bioinf. 27.11 (2011) (cit. on pp. 17, 26).

[66]F Sanger, S Nicklen, and A R Coulson. “DNA sequencing with chain-terminating
inhibitors”. en. In: Proc. Natl. Acad. Sci. U. S. A. 74.12 (Dec. 1977), pp. 5463–5467
(cit. on p. 5).

[67]Melanie Schirmer, Rosalinda D’Amore, and Umer Z .and others Ijaz. “Illumina error
profiles: resolving fine-scale variation in metagenomic sequencing data”. In: BMC
Bioinform. 17.1 (2016) (cit. on p. 29).

Bibliography 125

[68]Bertil Schmidt and Andreas Hildebrandt. “Next-generation sequencing: big data
meets high performance computing”. en. In: Drug Discov Today 22.4 (Feb. 2017),
pp. 712–717 (cit. on p. 1).

[69]Marcel H Schulz, David Weese, Manuel Holtgrewe, et al. “Fiona: a parallel and
automatic strategy for read error correction”. In: Bioinf. 30.17 (2014) (cit. on pp. 17,
26).

[70]Milan Shah, Reece Neff, Hancheng Wu, et al. “Accelerating Random Forest Classi-
fication on GPU and FPGA”. In: Proceedings of the 51st International Conference on
Parallel Processing. ICPP ’22. Bordeaux, France: Association for Computing Machinery,
2023 (cit. on p. 45).

[71]Atul Sharma, Pranjal Jain, Ashraf Mahgoub, et al. “Lerna: transformer architectures
for configuring error correction tools for short- and long-read genome sequencing”.
In: BMC Bioinformatics 23.1 (Jan. 2022), p. 25 (cit. on p. 18).

[72]Haixiang Shi, Bertil Schmidt, Weiguo Liu, and Wolfgang Müller-Wittig. “A Parallel
Algorithm for Error Correction in High-Throughput Short-Read Data on CUDA-
Enabled Graphics Hardware”. In: Journal of Computational Biology 17.4 (Apr. 2010),
pp. 603–615 (cit. on p. 18).

[73]David H. Silver, Shay Ben-Elazar, Alexei Bogoslavsky, and Itai Yanai. “ELOPER:
elongation of paired-end reads as a pre-processing tool for improved de novo genome
assembly”. In: Bioinformatics 29.11 (Apr. 2013), pp. 1455–1457. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/29/11/1455/17100069/
btt169.pdf (cit. on pp. 19, 90).

[74]Mikang Sim, Jongin Lee, Suyeon Wy, et al. “Generation and application of pseudo–
long reads for metagenome assembly”. In: GigaScience 11 (2022) (cit. on p. 90).

[75]Jared T Simpson and Richard Durbin. “Efficient de novo assembly of large genomes
using compressed data structures”. In: Genome research 22.3 (2012) (cit. on pp. 17,
25).

[76]L Song, L Florea, and B Langmead. “Lighter: fast and memory-efficient sequencing
error correction without counting”. In: Genome Biology 15.11 (2014) (cit. on pp. 17,
25).

[77]Zachary D Stephens, Skylar Y Lee, Faraz Faghri, et al. “Big data: astronomical or
genomical?” In: PLoS biology 13.7 (2015), e1002195 (cit. on p. 1).

[78]Julie D. Thompson, Toby. J. Gibson, and Des G. Higgins. “Multiple Sequence Align-
ment Using ClustalW and ClustalX”. In: Current Protocols in Bioinformatics 00.1 (Aug.
2002) (cit. on p. 20).

[79]Benjamin P. Vandervalk, Chen Yang, Zhuyi Xue, et al. “Konnector v2.0: pseudo-long
reads from paired-end sequencing data”. In: BMC Medical Genomics 8.3 (Sept. 2015),
S1 (cit. on pp. 19, 90).

[80]Jeremy R Wang, James Holt, Leonard McMillan, and Corbin D Jones. “FMLRC: Hybrid
long read error correction using an FM-index”. In: BMC bioinformatics 19 (2018),
pp. 1–11 (cit. on p. 17).

126 Bibliography

https://academic.oup.com/bioinformatics/article-pdf/29/11/1455/17100069/btt169.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/11/1455/17100069/btt169.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/11/1455/17100069/btt169.pdf

[82]Lifeng Yan, Zekun Yin, Hao Zhang, et al. “RabbitQCPlus 2.0: More Efficient and
Versatile Quality Control for Sequencing Data”. In: Methods (2023) (cit. on pp. 3,
85).

[83]Jiajie Zhang, Kassian Kobert, Tomáš Flouri, and Alexandros Stamatakis. “PEAR: a
fast and accurate Illumina Paired-End reAd mergeR”. In: Bioinformatics 30.5 (2014),
pp. 614–620 (cit. on p. 90).

[84]Aleksey V. Zimin, Guillaume Marçais, Daniela Puiu, et al. “The MaSuRCA genome
assembler”. In: Bioinformatics 29.21 (Aug. 2013), pp. 2669–2677. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/
btt476.pdf (cit. on pp. 17, 90).

Webpages

[@27]Illumina. Understanding Illumina Quality Scores. 2014. URL: https://www.illumina.
com / content / dam / illumina - marketing / documents / products / technotes /
technote_understanding_quality_scores.pdf (visited on Oct. 18, 2022) (cit. on
p. 36).

[@31]June 2000 White House Event. 2000. URL: https://www.genome.gov/10001356/
june-2000-white-house-event (visited on Aug. 21, 2023) (cit. on p. 1).

[@56]NVIDIA. CUDA C++ Programming Guide. 2023. URL: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/ (visited on Aug. 21, 2023) (cit. on p. 12).

[@57]NVIDIA. NVIDIA Clara for Genomics. 2023. URL: https://www.nvidia.com/en-
us/clara/genomics/ (visited on Aug. 21, 2023) (cit. on p. 20).

[@81]Kris A. Wetterstrand. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP). 2023. URL: https://www.genome.gov/sequencingcostsdata
(visited on Aug. 21, 2023) (cit. on p. 2).

Webpages 127

https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/btt476.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/btt476.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/btt476.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_understanding_quality_scores.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_understanding_quality_scores.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_understanding_quality_scores.pdf
https://www.genome.gov/10001356/june-2000-white-house-event
https://www.genome.gov/10001356/june-2000-white-house-event
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.nvidia.com/en-us/clara/genomics/
https://www.nvidia.com/en-us/clara/genomics/
https://www.genome.gov/sequencingcostsdata

List of Figures

1.1. Sequencing costs per human genome as reported by the National Human
Genome Research Institute [@81] . 2

2.1. Paired-end sequencing of a DNA fragment. Typically, not the full frag-
ment length is sequenced per strand. 6

2.2. An MSA of five sequences with its consensus string and its probability
profile. 11

2.3. A block-wide parallel reduction . 15

4.1. Left: k-mer frequency histogram. A frequency threshold separates
weak k-mers (yellow) from solid k-mers (green). Right: k-mer based
modification of a sequence. 26

4.2. Workflow of CARE: (a) The signature of an anchor read (ri) is deter-
mined by minhashing and used to query the precomputed hash tables.
The retrieved reads form the candidate read set C(ri). (b) All reads in
C(ri) are aligned to ri. Reads with a relatively low semi-global pair-wise
alignment quality are removed, resulting in the filtered set of candidate
reads (F (ri)). (c) The initial MSA is constructed around the center ri

using F (ri). The MSA is refined by removing candidate reads with a
significantly different pattern from the anchor (i.e. r15, r22, r7 in the
example). (d) The anchor read (the seventh nucleotide in ri in the
example) and optionally some of the candidates are corrected (the fifth
nucleotide in r2 in the example), using a provided random forest trained
for correction. 28

4.3. Constructing a look-up table from the generated key-value pairs of a
single hash function. 37

4.4. Producer-consumer-pipeline for CPU hash tables (left) and a simple
pipeline for GPU hash tables (right). Blue and green indicate CPU
workloads and GPU workloads, respectively. 41

4.5. Finding candidate read ids for a batch of two reads. Three hash functions
are used. Different colors indicate results of different hash functions. . 42

4.6. Bit-parallel hamming distance computation. Mismatching characters
are highlighted red. 43

129

4.7. An array with 16 elements is evenly distributed between two GPUs. The
array is collectively accessed by each GPU via index list. Indices per
GPU are identified via (non-stable) multi-split and exchanged. Locally
gathered data is sent back to the respective GPUs. The second all-to-all
operation includes a reordering of gathered data to match the order of
input indices. 47

5.1. Variation of correction parameters. 53

5.2. TP depending on random forest usage and candidate correction. 55

5.3. FP depending on random forest usage and candidate correction. 55

5.4. Average TP ratio and FP ratio over CARE RF on simulated HiSeq data.
Greater numbers are better for TP. Smaller numbers are better for FP. . 57

5.5. Average TP ratio and FP ratio over CARE RF on simulated MiSeq data.
Greater numbers are better for TP. Smaller numbers are better for FP. . 58

6.1. Speed-up of hash table construction. 63

6.2. Relative time spent in the different steps during correction phase. . . . 64

6.3. Speed-up over the single-threaded CPU version in the correction phase. 65

6.4. Total speed-up of GPU version over CPU version. 66

6.5. Relative time spent in the different steps during correction with random
forests. 67

6.6. Speed-up of GPU version over CPU version in correction phase with
random forests. 68

6.7. Total speed-up of GPU version over CPU version with random forests. . 68

6.8. Runtime of the correction phase with GPU hash tables depending on
read data location. 8-bit quality scores are used. 69

6.9. Runtime of the correction phase with GPU hash tables depending on
read data location. 2-bit quality scores are used. 70

6.10. Runtime of the correction phase with CPU hash tables depending on
read data location. 8-bit quality scores are used. 71

6.11. Runtime of the correction phase with CPU hash tables depending on
read data location. 2-bit quality scores are used. 71

6.12. Multi-GPU speedup of the correction phase of R2 with GPU hash tables
for different data distribution schemes. A single thread is used. 75

6.13. Timeline to determine the candidate lists per anchor. 76

6.14. Timeline to correct the anchors. 76

6.15. Multi-GPU hash table access with all-to-all copies using CUDA API calls. 78

6.16. Multi-GPU hash table access with all-to-all copies using copy kernels. . 78

8.1. Layout of the four sequences for extension tasks. 91

130 List of Figures

8.2. Five different outcomes of extension task processing. Mismatches be-
tween the two strands (i.e. non-complementary bases) are marked in
red. The right-hand table indicates whether a pseudo-long read can be
constructed for a specific strictness. 95

9.1. Percentage of connected reads for simulated datasets. GapFiller did not
finish for S3, S4, S6, and S7. 102

9.2. Percentage of connected read pairs of real-world datasets. Error-rate is
given at the top of each bar. 106

9.3. Runtime and number of error-free connected reads of R3 depending on
the number of hash tables. 112

List of Figures 131

List of Tables

3.1. Selection of error correction tools for NGS data and TGS data with
their type of corrected errors and the key utilized data-structure: Bloom
filter (BF), Hash table (HT), Suffix Array (SA), FM-index, and De Bruijn
graph (DBG). 17

4.1. Features extracted from an MSA. c is the estimated dataset coverage. x

is the consensus nucleotide. o is the original nucleotide of the sequence
to be corrected (anchor or candidate). Features 6-14 describe only the
currently inspected column, whereas features 1-5 are properties that
cover multiple columns and are constant for all positions of the same
anchor or the same candidate, respectively. 45

5.1. Simulated datasets of collections A-D with their respective number of
reads. Dataset number 4 is only available in collection A. 51

5.2. Collection R of real-world HiSeq datasets. 51

5.3. Lost 21-mers for dataset R1. 59

5.4. Selected assembly results for dataset R3. 60

6.1. Runtime in seconds to count the number of reads per file. 62

6.2. Scaling of readstorage construction with the number of encoder-threads.
Runtime is given in seconds. The input file is already cached in RAM. . 62

6.3. GPU memory usage [MB] during correction phase. 65

6.4. Total runtime of correction of dataset A4. Runtime is given in minutes. 72

6.5. Comparison of the improved versions on M2. The single-GPU version
uses CPU hash tables. Times are given in minutes:seconds. 79

6.6. Runtime in seconds for GPU minhasher construction with multiple GPUs.
The construction of CPU hash tables with a single GPU takes 220 seconds. 79

6.7. Best configuration depending on the number of GPUs. (A) CPU version
– 64 threads, (B) GPU version with CPU hash tables and replicated reads
– 2 consumers and 20 producers per GPU, (C) GPU version with GPU
hash tables and distributed reads – 4 threads, (D) GPU version with
GPU hash tables and replicated reads – 4 threads. Runtimes are given
in [minutes:seconds]. 80

133

6.8. Speedup of GPU-accelerated FASTQ parsing when the parsed data
should be stored in host memory. 83

6.9. Speedup of GPU-accelerated FASTQ parsing when the parsed data
should be stored in device memory. 83

9.1. Simulated (S1-S7) and real-world (R1-R3) datasets used for evaluation. 100
9.2. Total error rate of filled gaps for simulated reads. 103
9.3. Difference between expected gap size and pseudo-long read gap size

for dataset S3. 103
9.4. Total error rate of filled gaps excluding length differences. 104
9.5. Pseudo-long read lengths when outward extension is enabled. Strict

mode 0 was used. 105
9.6. Error-rate of outward extended regions. 105
9.7. A selection of assembly metrics reported by Quast for real datasets R1

and R2 using the -s parameter for extended reads. 108
9.8. A selection of assembly metrics reported by Quast for real datasets R1

and R2 using the –merged parameter for extended reads. 109
9.9. Average improvement of extension quality for corrected datasets over

the original datasets. 110
9.10. Total program runtime and CPU (GPU) peak memory consumption in

GB for the datasets S2, S3, S4, and R3. 111

A.1. Results for A1. 135
A.2. Results for A2. 136
A.3. Results for A3. 136
A.4. Results for A4. 137
A.5. Lost 21-mers for dataset R1. 137
A.6. Lost 21-mers for dataset R2. 138
A.7. Lost 21-mers for dataset R3. 138
A.8. Selected assembly results for dataset R1. 139
A.9. Selected assembly results for dataset R2. 139
A.10. Selected assembly results for dataset R3. 140

134 List of Tables

Appendix A
A.1 CARE: Results for simulated data

A1 CARE CARE+RF BFC Musket
TP 27.6M 28.2M 28.7M 27.4M
FP 6,972 4,644 164,187 304,402
FN 1.6M 0.9M 0.4M 1.7M
TN 3.0G 3.0G 3.0G 3.0G
FPR 252.92 164.22 5,684.37 11,003.54
Sensitivity 0.95 0.97 0.99 0.94
Specificity 1 1 1 1
Precision 1 1 0.99 0.99

SGA BCOOL Lighter Karect
TP 28.1M 28.1M 27.8M 28.5M
FP 163,617 143,866 405,593 82,652
FN 1.0M 1.0M 1.4M 0.6M
TN 3.0G 3.0G 3.0G 3.0G
FPR 5,791.33 5,097.88 14,400.64 2,889.87
Sensitivity 0.96 0.96 0.95 0.98
Specificity 1 1 1 1.00
Precision 0.99 0.99 0.99 1

Tab. A.1.: Results for A1.

135

A2 CARE CARE+RF BFC Musket
TP 33.6M 34.0M 34.6M 33.9M
FP 5,249 2,129 51,866 102,655
FN 1.6M 1.0M 0.4M 1.0M
TN 3.6G 3.6G 3.6G 3.6G
FPR 109.83 62.69 1,498.06 3,018.26
Sensitivity 0.95 0.97 0.99 0.97
Specificity 1 1 1 1
Precision 1 1 1 1

SGA BCOOL Lighter Karect
TP 33.7M 34.0M 34.0M 34.4M
FP 42,008 46,499 124,522 49,202
FN 1.2M 0.9M 1.0M 0.5M
TN 3.6G 3.6G 3.6G 3.6G
FPR 1,244.78 1,364.57 3,650.62 1,426.32
Sensitivity 0.96 0.97 0.97 0.99
Specificity 1 1 1 1.00
Precision 1 1 1 1

Tab. A.2.: Results for A2.

A3 CARE CARE+RF BFC Musket
TP 23.6 24.5M 24.7M 22.5M
FP 10,646 7,641 377,975 493,773
FN 2.1M 1.2M 0.9M 3.1M
TN 2.6G 2.6G 2.6G 2.6G
FPR 451.7 312.07 15,043.12 21,463.34
Sensitivity 0.92 0.95 0.96 0.88
Specificity 1 1 1 1
Precision 1 1 0.98 0.98

SGA BCOOL Lighter Karect
TP 24.1M 23.8M 23.2M 23.9M
FP 597,770 627,532 888,141 159,309
FN 1.6M 1.8M 2.5M 1.7M
TN 2.6G 2.6G 2.6G 2.6G
FPR 24,238.49 25,668.63 36,942.57 6,611.58
Sensitivity 0.94 0.93 0.9 0.93
Specificity 1 1 1 1.00
Precision 0.98 0.97 0.96 0.99

Tab. A.3.: Results for A3.

136 Appendix A Appendix

A4 CARE CARE+RF BFC Musket
TP 760.1M 801.4M 814.6M 647.6M
FP 1.4M 1.2M 17.0M 34.6M
FN 125.6M 84.3M 71.2M 238.1M
TN 90.6 90.6G 90.6G 90.6G
FPR 1,836.69 1,546.08 20,413.46 50,765.89
Sensitivity 0.86 0.9 0.92 0.73
Specificity 1 1 1 1
Precision 1 1 0.98 0.95

SGA BCOOL Lighter Karect
TP 776.7M 768.7M 696.2M 725.5M
FP 34.1M 39.6M 55.7M 3.9M
FN 109.1M 117.0M 189.6M 160.2M
TN 90.6G 90.6G 90.6G 90.6G
FPR 42,091.74 49,019.64 74,086.65 5,339.75
Sensitivity 0.88 0.87 0.79 0.82
Specificity 1 1 1 1.00
Precision 0.96 0.95 0.93 0.99

Tab. A.4.: Results for A4.

A.2 CARE: K-mer evaluation results for real-world data

Coverage CARE CARE+RF BFC Musket SGA BCOOL Lighter Karect
1 3,700 2,888 11,496 141,236 5,567 6,675 44,807 17,682
2 328 247 4,710 110,990 1,309 3,045 23,429 7,092
3 73 39 2,928 94,440 135 1,902 15,917 4,764
4 59 9 845 84,262 25 1,449 10,703 3,265
5 14 2 172 74,006 3 1,368 6,985 2,298
6 10 1 41 60,491 3 1,387 4,495 1,582
7 21 0 29 42,896 0 1,237 2,476 919
8 4 0 4 19,948 2 1,307 1,305 544
9 11 0 1 476 0 1,447 644 203
10 21 0 1 83 0 1,686 294 48
Sum 4,241 3,186 20,227 628,828 7,044 21,503 111,055 38,397

Tab. A.5.: Lost 21-mers for dataset R1.

A.2 CARE: K-mer evaluation results for real-world data 137

Coverage CARE CARE+RF BFC Musket SGA BCOOL Lighter Karect
1 137,517 121,004 187,469 195,864 161,570 158,568 179,773 209,077
2 55,260 35,734 110,031 130,634 64,626 92,080 112,228 131,845
3 35,976 15,523 89,729 136,256 11,182 92,686 111,140 127,533
4 21,704 7,275 45,748 143,262 1,167 96,251 104,020 126,690
5 10,571 2,377 9,599 143,747 133 94,475 83,661 118,392
6 4,134 477 1,353 141,857 46 93,473 59,933 104,004
7 1,668 76 175 128,612 12 92,133 38,153 74,085
8 569 6 90 95,111 9 88,405 22,421 37,102
9 163 15 44 44,584 8 87,783 11,898 10,431
10 134 0 21 574 1 86,811 5,825 599
Sum 267,696 182,487 444,259 1,160,501 238,754 982,665 729,052 939,758

Tab. A.6.: Lost 21-mers for dataset R2.

Coverage CARE CARE+RF BFC Musket SGA BCOOL Lighter Karect
1 20,833 20,072 29,126 36,154 23,732 21,967 31,698 34,237
2 2,520 2,369 7,164 12,853 4,391 4,197 8,647 9,076
3 538 537 3,939 9,793 926 2,219 5,529 5,471
4 199 162 1,996 9,541 241 2,257 4,265 4,486
5 80 68 636 10,397 84 3,199 3,622 3,956
6 23 23 141 9,059 42 5,439 2,539 2,952
7 18 25 50 4,773 30 7,679 1,456 1,157
8 6 4 21 81 5 10,763 769 284
9 1 3 4 13 3 14,377 349 108
10 0 2 4 3 1 18,434 109 64
Sum 24,218 23,265 43,081 92,667 29,455 90,531 58,983 61,791

Tab. A.7.: Lost 21-mers for dataset R3.

138 Appendix A Appendix

A.3 CARE: Assembly results for real-world data

R1 Unprocessed CARE CARE+RF BFC Musket
contigs ≥ 50k 64 65 63 59 42
contigs 26,592 26,599 26,573 26,787 31,048
misassembled 1,219 1,239 1,205 1,260 1,930
N50 7,659 7,660 7,696 7,607 6,126
NG50 8,518 8,537 8,575 8,497 6,635

SGA BCOOL Lighter Karect
contigs ≥ 50k 64 65 54 55
contigs 26,602 27,124 27,551 27,198
misassembled 1,217 1,639 1,349 1,289
N50 7,660 7,436 7,378 7,464
NG50 8,513 8,189 8,108 8,220

Tab. A.8.: Selected assembly results for dataset R1.

R2 Unprocessed CARE CARE+RF BFC Musket
contigs ≥ 50k 575 587 587 561 456
contigs 9,227 9,154 8,983 9,455 10,748
misassembled 670 663 669 724 681
N50 43,681 44,189 45,909 42,343 33,564
NG50 43,568 44,165 45,807 42,281 33,375

SGA BCOOL Lighter Karect
contigs ≥ 50k 570 626 487 483
contigs 9,449 8,354 10,901 10,811
misassembled 666 689 688 676
N50 42,514 50,620 33,426 34,551
NG50 42,350 50,280 33,301 34,203

Tab. A.9.: Selected assembly results for dataset R2.

A.3 CARE: Assembly results for real-world data 139

R3 Unprocessed CARE CARE+RF BFC Musket
contigs ≥ 50k 3 51 63 57 52
contigs 18,340 10,941 10,635 10,697 11,211
misassembled 135 611 554 603 734
N50 7,859 14,196 14,749 14,673 13,742
NG50 5,506 10,251 10,624 10,470 9,886

SGA BCOOL Lighter Karect
contigs ≥ 50k 43 24 48 53
contigs 11,298 13,872 11,056 10,820
misassembled 763 1,066 756 577
N50 13,765 10,925 14,268 14,436
NG50 9,806 7,727 10,162 10,263

Tab. A.10.: Selected assembly results for dataset R3.

140 Appendix A Appendix

	Titlepage
	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis structure
	1.3 Publications

	2 Background
	2.1 Bioinformatics
	2.2 Sequence similarity and sequence alignment
	2.2.1 Hamming Distance
	2.2.2 Pair-wise sequence alignment
	2.2.3 Multiple-sequence alignment

	2.3 GPU computing

	3 Related Work
	I Sequencing read error correction
	4 CARE: Context-Aware Read Error correction
	4.1 Publications
	4.2 Related Work
	4.2.1 K-mer-based methods
	4.2.2 MSA-based methods

	4.3 Algorithm
	4.3.1 Construction phase
	4.3.2 Correction phase
	4.3.3 Output phase

	4.4 Implementation
	4.4.1 Data structures
	4.4.2 CPU version
	4.4.3 Single-GPU version
	4.4.4 Batched minhasher queries
	4.4.5 Bit-parallel hamming distance
	4.4.6 MSA construction
	4.4.7 Random Forest
	4.4.8 Multi-GPU version

	5 Evaluation of CARE
	5.1 Datasets
	5.2 Training of Random Forests
	5.3 Variation of program settings
	5.4 Evaluation on simulated HiSeq datasets
	5.5 Evaluation on simulated MiSeq datasets
	5.6 Evaluation on real-world datasets
	5.6.1 K-mer evaluation
	5.6.2 De-novo assembly evaluation

	6 Performance of CARE
	6.1 Construction phase
	6.2 Correction phase
	6.3 Merge phase
	6.3.1 Overall performance

	6.4 Performance with random forests
	6.5 Read placement
	6.6 Performance comparison to other tools
	6.7 Multi-GPU Performance
	6.7.1 Dataset R2
	6.7.2 Dataset A4

	6.8 Proof-of-concept: Sequence parsing on the GPU

	7 Conclusion

	II Read extension
	8 CAREx: Context-aware read extension
	8.1 Related Work
	8.2 Algorithm
	8.2.1 Construction phase
	8.2.2 Extension phase

	8.3 Implementation

	9 Evaluation of CAREx
	9.1 Datasets
	9.2 Program options
	9.3 Evaluation on simulated datasets
	9.4 Evaluation on real-world datasets
	9.4.1 Edit statistics
	9.4.2 De-novo assembly

	9.5 Impact of sequencing errors
	9.6 Performance

	10 CAREx Conclusion

	III Conclusion
	11 Future work
	12 Conclusion
	Bibliography
	List of Figures
	List of Tables
	A Appendix
	A.1 CARE: Results for simulated data
	A.2 CARE: K-mer evaluation results for real-world data
	A.3 CARE: Assembly results for real-world data

